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ABSTRACT

We generalize the Max Share approach to allow for simultaneous identification of a multiplicity of shocks
in a Structural Vector Autoregression. Our machinery therefore overcomes the well-known drawbacks that
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individually identified shocks (i) tend to be correlated to each other or (ii) can be separated under orthog-

onalizations with weak economic ground. We show that identification corresponds to solving a nontrivial
optimization problem. We provide conditions for non-emptiness of solutions and point-identification, and
Bayesian algorithms for estimation and inference. We use the approach to study the effects of uncertainty
and financial shocks, allowing for the possibility that the former responds contemporaneously to other
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shocks, distinguishing macroeconomic from financial uncertainty and credit supply shocks. Using U.S. data
we find that financial uncertainty mimics a demand shock, while the interpretation of macro uncertainty
is more mixed. Furthermore, variation in uncertainty partially represents the endogenous response of

uncertainty to other shocks.

1. Introduction and Related Literature

Since the contribution of Sims (1980), structural vector autore-
gressions (SVARs) are the typical toolkit for investigating the
dynamic effects caused by macroeconomic shocks. While early
studies employed zero short-run, sign and long-run restric-
tions on impulse response functions (IRFs) for the identifi-
cation of structural shocks (Sims 1980; Blanchard and Quah
1989; Uhlig 2005), a most recent device, known as Max Share
identification, constrains the Forecast Error Variance Decom-
position (FEVD) of target variables (Uhlig 2004). For exam-
ple, this approach identifies technology shocks as those which
explain the most of the FEVD of labor productivity at 10-
year period (Francis et al. 2014). Other applications include
DiCecio and Owyang (2010) (technology shocks), Barsky and
Sims (2011) and Kurmann and Sims (2021) (news shocks),
Mumtaz, Pinter, and Theodoridis (2018) (credit shocks), Mum-
taz and Theodoridis (2023) (inflation target shocks), Cal-
dara et al. (2016) (uncertainty and credit shocks), Levchenko
and Pandalai-Nayar (2020) (sentiment shocks) and Angeletos,
Collard, and Dellas (2020) (a variety of supply and demand
shocks).

The Max Share approach is common because its implemen-
tation is easy and delivers less biased impulse responses than
standard long run restrictions (Francis et al. 2014). However, it
presents two drawbacks. First, it can identify only one shock at
a time. This makes the identified shock be often correlated with
other disturbances; as such it is not truly structural. For instance,
Cascaldi-Garcia and Galvao (2021) find that uncertainty and

news shocks, if singularly identified, are strongly correlated.
Thus, literature has been adopting a sequential procedure, where
Max Share is applied to orthogonalized shocks. In practice,
orthogonalizations rely on arbitrary ordering restrictions, mak-
ing any economic interpretation hard (Uhlig 2004). For exam-
ple, Caldara et al. (2016) apply the Max Share identification to
sequentially identify uncertainty and financial shocks, finding
that changing the order of identification dramatically affects
the results, for example uncertainty can be both expansionary
and recessionary. Second, Max Share confounds shocks (Gian-
none, Lenza, and Reichlin 2019; Dieppe, Francis, and Kindberg-
Hanlon 2021; Kurmann and Sims 2021); identified distur-
bances tend to be a linear combination of the truly structural
shocks.

In this article, we generalize the Max Share toolkit to identi-
fication of a multiplicity of shocks. Instead of constraining the
FEV to a single shock, we simultaneously restrict (a function
of) the FEV of target variables to more shocks. Researchers
have been increasingly identifying more shocks (Mertens and
Ravn 2013; Furlanetto, Ravazzolo, and Sarferaz 2017; Piffer
and Podstawski 2018; Brianti 2021; Cascaldi-Garcia and Galvao
2021; Ludvigson, Ma, and Ng 2021; Giacomini, Kitagawa, and
Read 2022); while some strategies, such as sign restrictions
and proxy SVARs, allow for identification of a multiplicity of
disturbances, the methodological contribution of this article is
to make the Max Share identification suitable for more shocks.
This addresses the problem of sequential identification implied
by the standard Max Share approach and mitigates the issue of
shocks confounding.
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Our identification strategy involves the solution of a con-
strained maximization problem, where the objective function
is an equally weighted linear combination of the FEVD of
the (target) variables of interest and the constraints are the
inequality restrictions on the FEVD, that is on the contributions
of the shocks to the FEV of different variables (for instance,
in our application, macro uncertainty shocks explain varia-
tion of macro uncertainty proxy more than the fluctuation in
credit spreads). Depending on the application, those restric-
tions can be replaced by, or combined with, traditional sign
restrictions. We show that the problem corresponds to a non-
convex quadratic optimization on the columns of the rota-
tion matrix transforming reduced-form residuals into structural
shocks. However, we provide a flexible toolkit and establish mild
conditions under which the solution of the optimization prob-
lem exists (non-emptiness of the identified set) and is unique
(point-identification). We develop simple algorithms to perform
Bayesian estimation and inference, even though of course the
identification result and properties do hold also in a frequentist
setting.

A simulation exercise shows that our approach recovers
the impulse response functions in different Data Generating
Processes (DGPs) and mitigates the problem of confounded
shocks.

Turning to the empirical application, we apply the proposed
identification scheme to a SVAR model estimated with U.S. data
and identify macro uncertainty, financial uncertainty and pure
financial (credit supply) shocks. Since the influential paper of
Bloom (2009), the business cycle relationship between uncer-
tainty and macroeconomic variables has received extensive con-
sideration (Bloom (2014) provides an excellent survey). Three
challenges come to the fore. First, the common assumption
in empirical works is that uncertainty is exogenous, that is it
does not respond contemporaneously to economic variables.
However, the current evidence makes researchers unable to take
up a position on the direction of the causality between uncer-
tainty and economic variables. Henceforth, we use the terms
exogenous (endogenous) as shorthand for predetermined (not
predetermined) within the period.

A separate challenge is about the origins of uncertainty. Stan-
dard theories claim that uncertainty originates from macroeco-
nomic fundamentals, for example productivity. However, it has
been argued that uncertainty can depress the economy through
sources of uncertainty specific to financial markets (Bollerslev,
Tauchen, and Zhou 2009; Ng and Wright 2013). The current
literature does not disentangle the contributions of macroeco-
nomic versus financial uncertainty to business cycle fluctua-
tions, nor does it allows feedback between macroeconomic and
financial uncertainty. Exceptions are the small-scale models in
Ludvigson, Ma, and Ng (2021) and Angelini et al. (2019) and
the contribution in Shin and Zhong (2020).

While Furlanetto, Ravazzolo, and Sarferaz (2017), Caldara
et al. (2016), Caggiano et al. (2021), and Brianti (2021) exten-
sively discuss the need to identify credit shocks to sharpen iden-
tification of uncertainty shocks accordingly, there is high degree
of comovement between indicators of financial distress and
uncertainty proxies (Caldara et al. 2016; Brianti 2021; Caggiano
etal. 2021); also, uncertainty and financial shocks have theoreti-
cally the same qualitative effects on both prices and quantities. It

is therefore difficult to impose plausible zero or sign restrictions
to identify these two disturbances.

Our approach deals with the three issues above. We find that
financial uncertainty shocks act as negative demand shocks, that
is decrease real activity; increase in macro uncertainty leads to
a recession, but the effect on prices is much more mixed. The
responses to the two shocks are also quantitatively different:
macroeconomic uncertainty has a stronger and more persis-
tent effect on the real activity variables. Our results show that
uncertainty is endogenous to some extent, in the sense that
a nontrivial share of the variance of measures of uncertainty
represents endogenous responses to non-uncertainty shocks.
Finally, increases in credit spreads trigger a recession.

The article is organized as follows. Section 2 provides the
econometrics framework and the standard Max Share identifica-
tion; Section 3 introduces our approach and its properties; Sec-
tion 4 presents the empirical application; Section 5 concludes. A
separate supplemental Appendix provides full proofs (Appendix
A), validation of the identification approach through fully struc-
tural models (Appendix B), additional details about the sim-
ulation exercises (Appendix C), robustness checks (Appendix
D), detailed description of the algorithms (Appendix E), gen-
eralization to the frequency domain (Appendix F) and further
extensions (Appendix G and H).

2. Theoretical Framework

Consider a SVAR(p) model

p
Ay, =a+) Ay, i+e 2.1)
j=1
fort =1,..., T, wherey, is an n x 1 vector of endogenous vari-

ables, €; an n x 1 vector white noise process, normally distributed
with mean zero and variance-covariance matrix I, Aj isannxn
matrix of structural coefficientforj = 0, .. ., p. The disturbances
€, are mutually uncorrelated, and are therefore interpretable as
structural shocks. The initial conditions yy, . . ., y, are given. Let
0 = (Ap,Ay) collect the structural parameters, where Ay =
(a,Aj) forj=1,...,p.

The reduced-form representation is a Vector Autoregression
(VAR):

P
V= b =+ Z B]yt—] + uy, (22)

j=1
where b = Aj'a is an n x 1 vector of constants, B, =
Ay lAj, u = A e, denotes the n x 1 vector of reduced-
form errors. var(u;) = E(wu'y) = ¥ = AJI(AO_I)’ is the

n X n variance-covariance matrix of reduced-form errors. Let
¢ = (B,X) € @ collect the reduced-form parameters, where
B = [bB,....B,],® C R™WP » E, and E is the space of
symmetric positive semidefinite matrices.

We define the n x n matrix
IR" = C,(B)A,! (2.3)

as the impulse response at hth horizon for h = 0, 1,. .., where
Cj,(B) is the hth coefficient matrix of (I,, — Z‘Z:l B, LML Its



(i, j)-element denotes the effect on the ith variable in y, ;, of a
unit shock to the jth element of €;. As is well-known there are
several observationally equivalent Ay matrices, and expression
(2.3) actually involves a set of impulse responses.

To formalize this fact we follow Uhlig (2005) and define the
set of all IRFs through an #n x n orthonormal matrix Q € ®(n),
where ©(n) characterizes the set of all orthonormal n x n matri-
ces. Uhlig (2005) show that {4y = Q’Z;l : Q € O(n)} is the
set of observationally equivalent Ay’s consistent with reduced-
form parameters, where X relates to Ag by ¥ = Ay ! (Ay DUS
denotes the lower triangular Cholesky matrix with nonnegative
diagonal coefficients of X. The likelihood function depends on
¢ and does not contain any information about Q, leading to
ambiguity in decomposing X. The identification problem arises
because there is a multiplicity of Q’s which deliver Ay given
¢. Specifically, the impulse response of variable i to shock j
at horizon h, that is (i, j)-element of IR", can be expressed as
¢iCh(B)X+Qej = ¢’ ih(d))qj, where e; is the ith column vector
of I, q; is the jth column of Q and ¢’;;,(¢) represents the ith
row vector of Cy,(B)X,. Alternative identification schemes can
be achieved by placing a set of restrictions on Q. For example,
imposing Q = I, implies a recursive ordering identification,
that is the Cholesky decomposition, whereas sign restrictions
specify a set of admissible Q.

2.1. Sign Restrictions

Before introducing our identification toolkit, we review the sign
restrictions, which are often combined with the Max Share iden-
tification in empirical applications. Assume that the researcher
is interested in imposing some sign restrictions on the impulse
response vector to the jth structural shock, and let s; denote the
number of sign restrictions on impulse responses at horizon h. In
this case, the impulse response is given by the jth column vector
of IR" = C,(B)X,Q, and the sign restrictions are

Suj($)q; = 0,

where Spi(@) = DyjCp(B)Zy is a spj X n matrix and Dy;
is the sp; x n selection matrix that selects the sign-restricted
responses from the n x 1 response vector Cy (B)Ztrqj. The
nonzero elements of Dy; can be equal to 1 or to —1 depending on
the sign of the restriction on the impulse response of interest. By
considering multiple horizons, the whole set of sign restrictions
placed on the jth shock is

Si(@®)q; > 0. (2.4)

Specifically, S; is a <Z:’: 0 shj) X n matrix defined by S;(¢) =

[s'oj(q», . .,S’,-,jj(q))] ' Let Is C {1,2,...,n) be the set of
indices such that j € Zg if some of the impulse responses to
the jth structural shock are sign-constrained. Thus, the set of all
sign restrictions is

Sj((b)qj >0, forj e Is. (2.5)
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2.2. The Forecast Error Variance

Given the available information up to t — 1, FE(h) = y,_j —
Yiphil—1 18 the fz—step ahead forecast error. The Forecast Error

Variance at h is

FEV() = B[O =i )0~ Yeii)| =

ZZ:O IRPIR" . Thus, CFEV;(E) denotes the FEV at horizon &

of variable i explained by the jth structural shock—expressed
with a number in the interval [0, 1] -:

CFEV](h) = 4/ ($)q;, (2.6)

) bV

where Yi(¢) = M is a n x n positive semidefinite
k 2 h=0 € in(@)cin(¢)

matrix. This is typically employed to illustrate the sources of

variables’ fluctuation at different horizons.

2.3. Standard Max Share Identification

Uhlig (2004) and subsequent literature propose to identify
shocks by maximizing the FEV of a target variable i to the shock
of interest j:

4y = argmax q;Y; ($)q; (2.7)
subject to
Sj((b)qj >0, forjeZs (2.8)
and
q;qj =1 (2.9)

This is a convex and user-friendly problem; for example, in
absence of sign restrictions, q;- is the eigenvector corresponding
to the highest eigenvalue of the reduced-form matrix T}l; ().
For instance, Francis et al. (2014) identify a technology shock as
the shock with the maximum contribution to the FEV of labor
productivity at the 10-year horizon (e.g., h = 40 with quarterly
data).

However, this approach presents two drawbacks. First, in
presence of more than one shock of interest, Max Share iden-
tification is sequentially applied on orthogonalized shocks. In
practice, orthogonalizations rely on arbitrary ordering restric-
tions. For example, in an n-variable system if there are two
shocks of interest, the first shock might be identified as the shock
that has the maximum contribution to the FEV of variable 1
over some horizon. This point-identifies q,. The second shock
might then be identified as the shock that has the maximum
contribution to the FEV of variable 2 over some horizon, subject
to the constraint g,q, = 0 (i.e., so the two identified shocks are
uncorrelated). Second, Max Share identification tends to con-
found shocks, that is delivers identified shocks that are a linear
combination of the truly structural disturbances. The following
bivariate example analytically illustrates the methodology and
its issues.

Example 2.1. Appendix A.2 provides the proof of the results in
this example. The structural framework of the bivariate SVAR(0)
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is the following (adding some dynamics would not change the
spirit of the findings):

w2 (@) a0m (@ ®), pmnr
Yt €2t ax  ax
(2.10)
where (y11,y2¢) are two endogenous variables, respectively.
(€11, €2¢) denotes an iid normally distributed vector of struc-
tural shocks with variance-covariance the identity matrix. § =
Aj collects the structural parameters, and the contempora-
neous impulse responses are elements of A;'. The reduced-
form model is indexed by X (the variance-covariance matrix
of the endogenous variables), which satisfies ¥ = A 1(Aa by,
Let X, = (011 0 > denote its lower triangular Cholesky
021 O
decomposition, where 017 > 0, 022 > 0,and o037 < 0
(the latter for simplicity, without loss of generalization). Thus,
¢ = (011,021,022) collects the reduced-form parameters.
Following the example of Uhlig (2005), A can be parameter-
ized via the Cholesky matrix X and a rotation matrix Q =
cosp —sinp
(sin p Ccosp
structural matrix of impact responses can be written as

IR =A;'=%,Q

> with spherical coordinate p € [0,2]. The

2.11)

_ 011 COS P —oy1 sin p

B <021 Ccosp + oppsinp  —oy1 sin p + 073 cos p) ’
For simplicity, we assume no sign constraints other than the
normalizations: 011 cos p > 0 and —o,1 sin p 4+ 033 cosp > 0.
Let Q; and IRg denote the ijth element of the two matrices.

We are interested in identifying q; and gq,. Suppose that
we apply the Max Share identification to g, first, that is the
first shock is identified as the shock that has the maximum
contribution to the one-step-ahead FEV of the first variable. As
a result, g, is derived as the orthogonalized vector to gq,. In this
case, the Appendix shows that €1, = cos p€1pgp — sin p€xpep,
where €1¢pgp and €;pgp are the shocks in the DGP. Unless the
DGP satisfies the restriction p = 1 (equivalently, IR}, = o1y,
that is the first shock explains 100 per cent of the one-step-ahead
forecast error variance of the first variable), the identified shock
is a linear combination of the true shocks. A similar argument
applies when €; is identified via the standard Max Share, where
the second shock explains 100 per cent of the one-step-ahead
forecast error variance of the second variable (see the Appendix).

This illustrates that (i) order of orthogonalization changes the
impulse responses and (ii) Max Share confounds shocks. Given
the bivariate setting, identifying one column of Q mechanically
pins down the other one. However, (i) and (ii) are general to
the n-variable case, for example Dieppe, Francis, and Kindberg-
Hanlon (2021).

3. Generalizing the Max Share Identification

Here we illustrate the identification of more shocks by constrain-
ing the FEVD and present the conditions for non-emptiness
of the identified set and point-identification (Section 3.1), its
implementation (Section 3.2), the issue of confounding shocks
and Monte Carlo exercise (Section 3.3), and the relation to
alternative identification methods (Section 3.4).

3.1. Identification

Our scheme identifies k < n shocks. This pins down ¢; =
Qej, with j € 1,...,k, where q’jqj = 0 forj # jis the
standard orthogonality condition. Without loss of generality,
suppose that (i) the k shocks of interest are ordered first, that is
j=12,...,kk+1,...,n, and (ii) the k corresponding target
variables are ordered first, thatisi = 1,2,...,k,k+1,...,n.

The k shocks jointly maximize a function of the FEV of the
target variables (3.1) subject to inequality constraints. Among
the latter, we can have inequalities on the relative strength of the
shocks, that is contributions of the shocks to the FEV of different
variables (3.2) and standard sign restrictions (3.3), depending on
the researcher’s beliefs.

k
Qi = argmax ) 4/, X;(®)q; (3.1)
1:k i—1
subject to
XL @)a; = i@ forj=1,....k Vil (2)
Sj(¢)q; = 0, forje Is C {1,....k}, (3.3)
and
Q,l:kQI:k =In. (3.4)

Three remarks are noteworthy: (i) the methodology can be
tweaked to be applied over (as opposed to at) horizon t by using
Q] = argmaxq,, Zle Z}%:o q’iY};(qS)qi in (3.1) as shown in
Appendix G; (ii) while hin (3.1) and (3.2) is set equal across all
target variables, one can use different horizons for different tar-
get variables, depending on the application (see Appendix H for
a formal description); (iii) one could alternatively impose that
a particular shock explains more of the variation of a particular
target variable than any other shock, this would be achieved by
using q’jT% ($)q; > 1 in place of (3.2).

The generalized Max Share approach proposed here avoids
the sequential identification and mitigates the problem of
confounding shocks as orthogonality is imposed on more
shocks; simulations in Section 3.3 and Appendix C provide an
illustration. .

The identifying assumptions are that, at some horizon h, the
first k shocks must (i) maximize the sum of the total variation
in the target variables and (ii) satisfy the constraint that each
shock needs to explain the variation of the corresponding target
variable more than it explains the variation of any other variable
(of course, sign restrictions can be used as well).

For instance, in our empirical application h=5k=3
and the variables and shocks of interest relate to macroeconomic
uncertainty, financial uncertainty, and credit supply. We will
identify the macroeconomic uncertainty shock as the innovation
that maximizes its contribution to the sum of the FEV of the
three target variables subject to the restrictions (3.2), which
establish that the contribution of the macroeconomic uncer-
tainty shock to the FEV of the macroeconomic uncertainty vari-
able must be higher than the contribution to the FEV of financial



uncertainty variables and credit spreads. Financial uncertainty
and credit supply shocks are identified similarly. The restrictions
are instrumental to separate macroeconomic uncertainty shocks
from financial uncertainty and credit supply shocks.

Importantly, this approach imposes some restrictions on
the relative strength of the shocks but it does not require the
researcher to take a stance in regards to the possible exogeneity
or endogeneity of uncertainty. In fact, Section 3.3 shows that our
identification assumptions are consistent with DGPs regardless
whether those frameworks consider endogenous or exogenous
uncertainty.

It is worth stressing that the constraints in (3.2) are not auto-
matically satisfied by maximization in (3.1): the latter requires
to maximize a sum, while the constraints are imposed on the
components of the sum. In practice, the degree of relevance of
restrictions in (3.2) depends on the empirical exercise. In our
application, we find that inequality constraints on the FEVD
quantitatively (but not qualitatively) affect the results. This is less
likely the case with the single shock Max Share identification (for
instance, see Table 2 in Angeletos, Collard, and Dellas 2020).

There is a tradeoft between sharp identification and computa-
tion, and this is especially true when using inequality constraints
(Uhlig 2017; Gafarov, Meier, and Olea 2018; Granziera, Moon,
and Schortheide 2018; Amir-Ahmadi and Drautzburg 2021;
Giacomini and Kitagawa 2021; Giacomini, Kitagawa, and Volpi-
cella 2022; Volpicella 2022). In fact restrictions that are too tight
can lead to unfeasible or empty regions, that is the constraints
are so demanding that they are rejected in the data. Here we
provide sufficient conditions for the existence of a solution to
the constrained optimization problem (non-emptiness of the
identified set). Doing so solves the tradeoff by ensuring that an
identification scheme can be found which is both informative
and not rejected by data. Without loss of generality, Proposi-
tions 3.1 and 3.2 assume that there are no sign restrictions.

Recall that q]’.‘ forj — 1,...,k denotes the jth column of the
identified matrix QJ ;. For j = 1, given the constraints in (3.2)-
(3.4), we define the following functions for k = 3:

1

fi =341 [ @) - T2 @) | ay,
1

R RHOERHOIS

1 1
fi==sd+ 3
1 1
fi=34"a4 — 3
Similar functions can be trivially defined for j = 2, ..., k and/or

when sign restrictions are imposed. In the case there were sign
restrictions only, one could rely on the standard results in the
literature to establish non-emptiness (Granziera, Moon, and
Schorfheide 2018; Giacomini and Kitagawa 2021; Amir-Ahmadi
and Drautzburg 2021).

We start with establishing a Gordan type alternative theorem,
which will be instrumental to obtain the non-emptiness result.

Proposition 3.1. Assumej = 1.IfPA € Ri\{o} such that (¥q, €
R™ 3ty Aifi > 0, g% exists.

JOURNAL OF BUSINESS & ECONOMIC STATISTICS . 5

The proof is provided in supplemental Appendix A. This
proposition rules out that—for a given shock—linear com-
binations of inequality constraints can contradict each other.
Note that this proposition alone establishes non-emptiness for
problem (3.1)-(3.3), but ignores the orthogonality conditions
(3.4). The satisfaction of orthogonality condition is essential
for identifying simultaneously all of the shocks, avoiding the
well-known issue that shocks identified one-at-a-time can be
correlated to each other.

Next we establish the conditions for the non-emptiness to the
constrained optimization problem (3.1)-(3.4). Let o denote a
permutation of 1,. . ., k among the k! possible permutations and
o(z) forz = 1,..., kdenote the zth element of the permutation
0. The following proposition holds:

Proposition 3.2. (Non-Emptiness) If there exists a permutation
o such that

1. for j = o (1) Proposition 3.1 is satisfied,
2. conditions in Proposition 3.1 are met for all j =
0(2),...,0 (k) in the Nullspace of the previous j — 1 columns

of Q,

then QJ ;. exists.

Supplemental Appendix A provides a proof and a technical
discussion. The proposition above is instrumental to find at least
one matrix Qj,; such that its first k columns g}, . . ., g% satisfy
Proposition 3.1 and are orthogonal to each other.

In supplemental Appendix E, we provide two algorithms
checking for non-emptiness: an accept-reject sampler and an
analytical detection of emptiness. Those algorithms are inter-
esting per se as extend some contributions in the literature to
multiple shocks identification. In the simulation exercise and
empirical application the feasibility region is always non-empty.

The constrained optimization problem (3.1)-(3.4) is non-
convex as we are optimizing over orthogonal vectors. The propo-
sition below establishes a sufficient condition for Qf, to be
point-identified. Of course, this does not rule out local optima,
in which case numerical optimization could still be challenging.

Proposition 3.3. (Point-Identification) Assume that Qj,; exists.
Ifc’ih((i))qj >0fori=1,....,kj=1,...,kand h = 0,...,h
then Qj ;. is unique.

The formal proof is given in supplemental Appendix A. Here
we would like to stress the intuition. Note that Proposition 3.3
imposes some sign restrictions. In particular, if the responses
of the variables to the shocks in the objective functions (and
in constraints 3.2) are sign-restricted, the optimization problem
becomes linear and the feasibility region is convex (Qj, is
selected over a closed convex feasibility region). Then point-
identification follows. Thus, those conditions have an economic
interpretation. In our application, we would need to impose
that macro uncertainty proxy, financial uncertainty proxy and
credit spreads increase after macro uncertainty, financial uncer-
tainty and credit supply shocks. In this article, the imposition of
those conditions is harmless as there is not much controversy
about the fact that increased uncertainty raises credit spreads
and the other way around. Also, we run a further check by
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estimating the model without explicitly imposing the conditions
in Proposition 3.3: we find that the targeted variables satisty
those sign constraints. Of course, depending on the application,
Proposition 3.3 may not be credibly imposed in some instances.
Proposition 3.4 establishes sufficient conditions under which
the shocks of interest fully explain the FEV of the target vari-
ables.
Let X! _(¢) = max{r’ -(¢),..., A -(¢)} denote the maximal
max,h Lh nh

eigenvalue associated to T%((b) among its n real eigenvalues

)J'ljl(qS), . .,x;ﬁ(q)).

Proposition 3.4. (100 % FEVD) The k shocks fully explain the
(sum of the) FEVD of the k target variables if the following
conditions apply:

L Qi =laj,.-.
alli=1,....k
2. 3% M@=k

* : i * __ 91 *
, q;] exists, where Tf. P)q; = )\male (¢)q; for

This proposition comes naturally from the quadratic nature
of the optimization problem. While Appendix A provides the
formal proof, this proposition requires the orthonormal vectors
of solution Q7 to be the eigenvectors associated at the maximal
eigenvalues of T;..l (¢), with the sum of the latter to be k. The
eigenvalues are a function of the reduced-form, so practical
implementation of Proposition 3.4 is straightforward.

3.2. Implementation

The following Algorithm delivers the posterior distribution of
the impulse response functions (or any other structural object)
of interest.

Algorithm 3.1

1: Draw ¢ from the posterior distribution of the reduced-form
VAR.

2: Check non-emptiness.

3: Obtain Q7 by solving the optimization problem (3.1)-(3.4)
and compute the impulse response functions via (2.3).

4: Repeat Step 1-3, L times, for example L = 1000.

Algorithm 3.1 consists in a step of conventional sampling
from the posterior of reduced-form parameters (Step 1), a step
for investigation of feasibility (Step 2, see algorithms in sup-
plemental Appendix E for its implementation), and a step of
numerical optimization (Step 3). The optimization involves a
quadratic objective function, but can be reduced to a much more
tractable problem by using Proposition 3.3.

Algorithm 3.1 is only meaningful under point identification,
for which Proposition 3.3 offers a sufficient condition. In absence
of point identification one should rely on alternative algorithms
developed in the literature on set identification, for example
Algorithm in Giacomini and Kitagawa (2021).

Note that Step 1 uses a posterior distribution, which means
it is based on a Bayesian estimation of the underlying reduced-
form VAR. This choice is simply based on the observation that
Bayesian VARs are widely used in empirical macroeconomics.

Still, Step 1 can be easily adapted to a frequentist framework,
for example using maximum likelihood estimates and invoking
large sample results or using a bootstrap approach to produce
draws from the VAR coefficients. In either case the entire proce-
dure would still remain valid, since the remaining steps condi-
tion on the reduced-form parameters (¢) and do not depend on
a prior over Q.

3.3. Confounding Shocks and Monte Carlo Exercise

A well-known problem of standard Max Share identification is
the confounding shocks, that is identified shocks tend to be a lin-
ear combination of the true structural disturbances (Giannone,
Lenza, and Reichlin 2019; Kurmann and Sims 2021; Dieppe,
Francis, and Kindberg-Hanlon 2021). Example 2.1 delivers an
analytical representation of the problem. Our approach miti-
gates the drawback; the intuition is that we orthogonalize over
a set of columns, decreasing the chance to construct linearly
combined shocks.

Simulation provides some evidence. Here we comment on
the results of the Monte Carlo exercises, whereas (to save on
space) Appendix C provides the corresponding plots. In the
simulations, we set i = 5 by following Caldara et al. (2016);
see Section 4.1 for a discussion about persistence of uncertainty
and financial shocks. Also, we checked that any Data Generating
Process (DGP) is consistent with the inequality restrictions (3.2)
and sign restrictions in Proposition 3.3.

We first employ a SVAR with exogenous uncertainty as DGP
and generate artificial data for industrial production (IP), finan-
cial uncertainty (uF*), credit spread (CS), price index (PCEPI),
monetary policy rate (FFR), and macroeconomic uncertainty
(uM*). In order to produce exogeneity in uncertainty, data are
generated by a recursive scheme with 1 lag (further lags do not
change the results), where macro and financial uncertainty are
ordered before the real variables. In the baseline scenario of
Figure C.5, financial uncertainty is ordered before macroeco-
nomic uncertainty, but the results still hold if we reverse the
order between uncertainty disturbances. Ordering of the other
variables do not affect the findings. In order to parameterize
the DGP, we first estimate the recursive model via maximum
likelihood with monthly U.S. data for the period 1962-2016;
we then fix the DGP and the reduced-form VAR to those esti-
mates. Once the artificial data have been generated, we use our
approach to estimate the impulse response functions. Since the
reduced-form is fixed to the DGP, any difference between the
responses of the DGP and the estimated ones is wholly driven by
identification, that is does not reflect estimation uncertainty. For
brevity, here we provide simulated results mostly for financial
uncertainty shocks.

Figure C.5 shows that our identification strategy can success-
fully identify the uncertainty shocks in presence of exogeneity.
In the figure the gray line denotes the true responses based
on the DGP. In the panels on the first row, we employ our
identification scheme to estimate the impulse responses (black
lines). According to panels (a), (b), and (c), our strategy works
very well. For the panels on the second row we apply the standard
Max Share for the financial uncertainty shock, showing that
it fails in recovering the response of industrial production (in



the medium-run) and credit spreads. Under the standard Max
Share, we find that, if individually identified, the correlation
between macro uncertainty, financial uncertainty and credit
supply shocks is very high; this is consistent with the shocks
being confounded.

We now explore the effectiveness of our scheme when uncer-
tainty is endogenous. Accordingly, we consider a DGP where
uncertainty is ordered after the other variables. This experi-
ment is displayed in Figure C.6. Also in this case the simula-
tion study suggests that our approach outperforms single-shock
identification.

In Figure C.6 there remain differences between the identified
and true impulse responses, for example response of credit
spreads. These differences arise because there are still a few
unidentified shocks in the system that could be confounded
with the identified ones, which means that the differences will
disappear if we were to increase the number of identified shocks.
Figure C.7 illustrates this point. While the scenario in Figure C.6
identifies three (macro and financial uncertainty, credit supply)
shocks, Figure C.7 also identifies monetary policy shock, leading
to a better identification. This happens because the higher is the
number of orthogonalized shocks, the lower is the probability of
getting linearly dependent (confounding) shocks, and the lower
is the bias in the simulation.

As argued by Dieppe, Francis, and Kindberg-Hanlon (2021),
two additional recommendations would help mitigate the risk of
confounded shocks further. First, employ our toolkit at horizon
h rather than over h (Kurmann and Sims 2021; Dieppe, Francis,
and Kindberg-Hanlon 2021). Second, use of frequency, rather
than time, domain (Dieppe, Francis, and Kindberg-Hanlon
2021); Appendix F presents our toolkit in such a setting.

Finally, we further validate our identification by relying on
tully structural models (see Appendix B).

3.4. Relation to Alternative Identification Methods

The identification approach outlined above allows to avoid
strong identification assumptions such as recursive orderings,
and therefore it lends itself naturally to investigate questions in
which one wants to remain agnostic about the direction of the
various causal effects. The study of the effects of uncertainty and
financial shocks is just one example of such a situation, as both
the theoretical literature and the empirical evidence so far are
inconclusive on whether uncertainty is an exogenous impulse
or an endogenous response.

Importantly, our strategy identifies all of the shocks simulta-
neously, thereby sidestepping the well-known issue that shocks
identified one-at-a-time can be correlated to each other, a
problem which is particularly relevant in, but not limited to,
uncertainty literature. For instance, Cascaldi-Garcia and Galvao
(2021) show that news and uncertainty shocks tend to be corre-
lated if identified separately; as such they are not truly structural.
Caldara et al. (2016) use the standard Max Share approach and
separate uncertainty and financial shocks by imposing different
ordering restrictions, finding that the order hugely affects the
results. Of course, solving this problem comes at a cost. While
classical Max Share identification can be easily solved by noting
that the identified shock corresponds to the eigenvector with
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the maximal eigenvalue associated to a reduced-form matrix,
the cost of allowing simultaneous identification of a multiplicity
of shocks is that the optimization problem can become non-
convex. This is a consequence of optimizing a function over a
multiplicity of orthonormal vectors. In Section 3.1 we estab-
lished mild conditions under which the problem is tractable and
computationally fast.

A common use of the Max Share approach is to reduce
the identification uncertainty implied by sign restrictions, that
is employing sign restrictions as constraints in the optimiza-
tion problem. The same applies to our approach. For example,
we can disentangle demand (say, government spending) from
supply (say, productivity) shocks by using sign restrictions as
constraints in the maximization problem. A positive demand
shock is expected to increase both quantities and prices, a
positive supply shock requires quantities and prices not to co-
move. In the maximization, we would use target variables, for
example long-run labor productivity and short-run government
spending, for supply and demand shocks, respectively. Our strat-
egy can resolve further situations in which set-identification
schemes are not sufficient to satisfactorily pin down the desired
shock. For example, Kilian and Murphy (2012) show that quali-
tative information beyond sign restrictions is necessary to dis-
tinguish demand and supply shocks in the oil market. Simi-
larly, separation between news and surprise shocks requires to
rank the relative effect of those disturbances over target vari-
ables, see Amir-Ahmadi and Drautzburg (2021) for an exam-
ple of such a situation: since their rank restrictions are linear
inequalities in Q, they can be easily nested in (3.3). In order
to separate credit and housing shocks Furlanetto, Ravazzolo,
and Sarferaz (2017) assume that the former explain variation of
total credits to households and firms more than the contribu-
tions to the fluctuations in the real estate value, and the other
way around.

The approach proposed in this article achieves point-
identification, avoiding the drawbacks of set-identification that
affect most of the aforementioned studies (Baumeister and
Hamilton 2015; Giacomini and Kitagawa 2021). Our machinery
also naturally provides a new toolkit for researchers concen-
trating on the idea that a number of shocks can explain most
of the movements in a possibly large set of macroeconomics
aggregates. See the principal component analysis literature and,
for a recent contribution, Angeletos, Collard, and Dellas (2020).

4. Empirical Application
4.1. Specification and Data

We now turn to our empirical application. Evaluating the rela-
tionship between economic variables and uncertainty requires
selecting both a concept and metric of uncertainty. In the base-
line model, we employ the Chicago Board Options Exchange
S&P 100 Volatility Index as a measure of financial uncertainty
and the measure developed by Jurado, Ludvigson, and Ng (2015)
(JLN hereafter) as a measure of macroeconomic uncertainty.
This is an average of the volatility of the residuals of a set of
factor-augmented regressions.

Our baseline reduced form model is a VAR estimated with
U.S. monthly data ranging from 1962m7 to 2016m12. We
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Figure 1. Responses to macroeconomic uncertainty shocks. The figure reports the posterior mean (black solid lines), the 68% Bayesian credibility region (black dashed
lines), and the 90% Bayesian credibility region (gray dashed lines). The shock size is set to one standard deviation.

assume 7 lags and a diffuse Normal Inverse Wishart prior: ¥ ~
IW(¥,d) and B|]X ~ N(0,X ® ), where ¥ = I, is the
location matrix, d = n 4 1 is a scalar degrees of freedom
hyperparameter and & = I, is the variance-covariance
matrix of B. The VAR includes 12 variables taken from the FRED
database: macroeconomic uncertainty (JLN, index), financial
uncertainty (VXO, index), credit spreads (CS, measured as the
difference between the BAA Corporate Bond Yield and the 10-
year Treasury Constant Maturity rate), number of non-farm
workers (PAYEM, 100Aln), industrial production (IP, 100Aln),
weekly hours per worker (HOURS, 100Aln), real consumer
spending (SPEND, 100Aln), real manufacturers new orders
(ORDER, index/100), real average earnings (EARNI, 100Aln),
PCE price index (PCEPI, 100Aln), first difference of federal
funds rate (FFR, A), S&P 500 (S&P, Aln). All the variables are
demeaned prior to estimation. In order to facilitate comparisons
with other studies, the impulse responses are expressed with
respect to the variables in levels.

We set /i = 5 by assuming a period of heightened uncertainty
and credit following shocks, rather than just a one-off spike.
This is consistent with Caldara et al. (2016). Formally, this
corresponds to identify the macroeconomic uncertainty shock
as the innovation that maximizes its contribution to the sum of
the FEV of JLN, VXO and credit spread over 6 months, subject
to the restrictions that the contribution of the macroeconomic
uncertainty shock to the FEV of JLN must be higher than the
contribution to the FEV of VXO and credit spreads. Financial
uncertainty and credit supply shocks are identified similarly.

However, there is no theoretical or empirical consensus on
the persistence of uncertainty and financial shocks. For example,
see the opposite findings in Cerra and Saxena (2008), showing
that financial shocks are more persistent than uncertainty dis-
turbances, and Berger, Dew-Becker, and Giglio (2020) and Bon-
ciani and Oh (2022), who find that uncertainty shocks are very
persistent. Carriére-Swallow and Céspedes (2013) find mixed
results across countries. Brianti (2021) argues that uncertainty is
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Figure 2. Responses to financial uncertainty shocks. The figure reports the posterior mean (black solid lines), the 68% Bayesian credibility region (black dashed lines), and
the 90% Bayesian credibility region (gray dashed lines). The shock size is set to one standard deviation.

more or equally persistent than credit supply shocks, while Cal-
dara et al. (2016) find similar persistence. Thus, we also estimate
the model for h = 0,...,4, finding no significant differences.
Supplemental Appendix D provides further robustness checks.

4.2. The Effects of Uncertainty and Financial Shocks

Figures 1 and 2 show the impulse responses to macro and
financial uncertainty shocks, respectively. Uncertainty has a
strong recessionary effect on employment, industrial produc-
tion, hours worked, consumer spending and real manufacturers’
new orders; the financial conditions also deteriorate, as shown
by the response of stock market and credit spreads. The fall
in the federal funds rate is consistent with monetary policy
trying to counteract the depressive effects of heightened uncer-
tainty. Notably, shocks to macroeconomic uncertainty increase
financial uncertainty, and vice-versa. Interestingly, we find some

evidence in favor of a negative response of prices (using inflation
rate provides similar results) for financial uncertainty shocks
only; on the other hand, macro uncertainty does not seem to put
any significant pressure on prices. This suggests that financial
uncertainty disturbances mimic demand shocks, namely they
trigger a recession and a deflationary pressure on the economy.
The interpretation for macro uncertainty is more mixed.

Among others, Furlanetto, Ravazzolo, and Sarferaz (2017),
Caldara et al. (2016), Caggiano et al. (2021), and Brianti (2021)
stress the need to identify credit shocks and sharpen the identifi-
cation of uncertainty shocks accordingly. Figure 3 shows that an
increase in credit spreads has a depressive and deflationary effect
on macroeconomic variables and leads to higher uncertainty,
especially financial uncertainty. The fall of prices and the loose
monetary policy are both more severe than what is induced by
uncertainty shocks.

To facilitate comparisons, Figure 4 compares the impulse
responses to macro and financial uncertainty shocks (by
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Figure 3. Responses to financial (credit supply) shocks. The figure reports the posterior mean (black solid lines), the 68% Bayesian credibility region (black dashed lines),
and the 90% Bayesian credibility region (gray dashed lines). The shock size is set to one standard deviation.

normalizing the shocks size to the same amount). The effects
of macroeconomic and financial uncertainty are qualitatively
different for prices (and earnings). Further quantitative differ-
ences arise. For example, the recessionary effect on real activ-
ity variables seem more pronounced following macroeconomic
uncertainty shocks, while financial conditions deteriorate more
with financial uncertainty shocks. In order to distinguish iden-
tified uncertainty shocks from other shocks, in supplemental
Appendix D we (i) re-estimate the model by controlling for a
series of demand and supply shocks, finding that the results
are unchanged and (ii) show that the correlation between our
identified uncertainty shocks and demand and supply shocks are
not statistically significant.

When re-estimating the responses without inequality con-
straints on the FEVD, we find that the results are qualitatively
unchanged, but quantitative differences can raise (especially for
the responses to the credit shocks and when the horizon of
maximization is other than i = 5).

Table 1. FEVD (%).

uF* shock h= h=10 h=20 h =40
uF* 91.63 10.64 6.39 4.46
uM* 8.46 2.04 1.04 0.61
s 9.57 3.86 1.90 1.04
uM* shock

uF* 1.64 1.60 1.21 0.94
uM* 86.81 10.05 5.25 295
s 0.56 1.93 1.42 1.02
CS shock

uF* 28.65 4.03 2.39 1.69
uM* 7.48 2.01 0.97 0.62
cs 75.14 8.86 441 238

4.3. Endogenous Uncertainty?

Since our scheme allows for a contemporaneous feedback effect
from economic and financial variables to uncertainty, it provides
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Figure 4. Comparison between macro and financial uncertainty shocks. The gray and black line denote the posterior mean of the impulse response functions to
macroeconomic and financial uncertainty shock, respectively. Size of the shocks has been normalized to 1%.

a natural ground to look into the issue of endogeneity of uncer-
tainty. In order to tackle this question, we look into the FEVD.
Table 1 presents the FEVD of macroeconomic uncertainty proxy,
financial uncertainty proxy, and credit spreads due to the three
shocks of interest. It seems that uncertainty, especially macro
uncertainty, is at least partially endogenous: the contribution of
macro (financial) uncertainty shock to the FEV of JLN (VXO)
is below 100%, suggesting that other shocks affect macro (finan-
cial) uncertainty. Considering estimation uncertainty (Bayesian
credible intervals) does not change the overall picture, that is
uncertainty, even contemporaneously, is never 100% exogenous.

However, such a conclusion is debated in the literature.
Ludvigson, Ma, and Ng (2021) argue that, while financial
uncertainty is mainly exogenous, macroeconomic uncertainty
presents some endogeneity. Angelini et al. (2019) find that
both macroeconomic and financial uncertainty are mostly

exogenous, and Carriero, Clark, and Marcellino (2021) point
out that macroeconomic uncertainty displays some endogeneity,
though more at quarterly than monthly frequency.

Each study above adopts a different identification strategy.
Ludvigson, Ma, and Ng (2021) use a small-scale model and a set-
identification approach based on narrative restrictions requiring
the shocks to be consistent with some historical episodes and
correlated with some external instruments. Instead, we use a
large-scale model, which reduces the problems of possible omit-
ted variable bias, and a point-identification approach, which
avoids the problems inherent in set-identification discussed for
example in Giacomini, Kitagawa, and Read (2021).

Angelini et al. (2019) also use a small-scale model in which
there are no proxies for financial conditions. They achieve iden-
tification by assuming that in the sample preceding January 2008
financial uncertainty shocks could neither contemporaneously
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impact on nor been impacted by macro variables directly. How-
ever, an indirect channel on real variables through the impact
from financial uncertainty to macro uncertainty is allowed
since the Great Moderation. Differently from them, we never
assume exogeneity of financial uncertainty, not even in some
sub-samples, and we use a large-scale model which includes
financial variables and a credit channel.

Carriero, Clark, and Marcellino (2021) employ a large model
and achieve point-identification exploiting heteroscedasticity in
the error terms of the SVAR. However, their framework does
not include macroeconomic and financial uncertainty in the
same unified setting. Furthermore, their approach requires an
ordering restriction on the block of macroeconomic variables
in which pure financial shocks are not explicitly identified.
Instead, the approach of this article allows to identify shocks to
financial and macroeconomic uncertainty which are orthogonal
by construction, and to disentangle them from pure financial
shocks.

5. Conclusions

This article developed a novel multiple shocks identification
scheme for SVARs, based on generalizing the Max Share to
joint identification of a multiplicity of shocks. Our approach
overcomes some drawbacks induced by individually identified
shocks, that is those shocks (i) tend to be correlated to each
other or (ii) can be separated under orthogonalizations with
weak economic ground. We characterized the properties of this
approach, such as non-emptiness and point-identification, and
provided an algorithm for its implementation. The toolkit devel-
oped in this article can be applied to any SVAR where standard
ordering and sign restrictions are not desirable or sufficient to
identify all of the shocks. We used the approach and U.S. data to
investigate the effects of uncertainty (allowing for the possibility
that uncertainty responds endogenously to other variables or
shocks) and financial shocks. We found that financial uncer-
tainty shocks mimic demand disturbances, while this is not
the case for macro uncertainty. On the other hand, our results
suggest that, while contemporaneous variation in uncertainty
measures tends to be largely driven by uncertainty shocks, a
nontrivial fraction of the variation in these measures is driven
by other (non-uncertainty) shocks, particularly beyond short
horizons.

Supplementary Materials

The Supplementary material consists of a Supplemental Appendix, data
and codes. The Appendix contains omitted proofs (Appendix A), theory-
driven justification of our approach applied to uncertainty and financial
shocks (Appendix B), simulation exercises (Appendix C), robustness checks
(Appendix D), algorithms for checking non-emptiness (Appendix E), rep-
resentation in the frequency domain (Appendix F), generalization of the
setting to (i) maximize the FEVD over (rather than at) a period of time
(Appendix G) (ii) different timing for different shocks (Appendix H).
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