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Abstract

We generalize the Max Share Identification approach to allow for simultaneous identi-

fication of a multiplicity of shocks in a Structural Vector Autoregression. Our machinery

therefore overcomes the well-known drawbacks that individually identified shocks (i) tend

to be correlated to each other or (ii) can be separated under orthogonalizations with weak

economic ground. We show that identification corresponds to solving a non-trivial opti-

mization problem on the columns transforming reduced-form shocks into structural shocks.

We provide conditions for existence and uniqueness of a solution, and Bayesian algorithms

for estimation and inference. We use the approach to study the effects of uncertainty shocks,

allowing for the possibility that uncertainty is an endogenous variable, and distinguishing

macroeconomic from financial uncertainty. Using US data we find that macroeconomic

uncertainty is mostly endogenous, and that overlooking this fact can lead to distortions

on the estimates of its effects. We show that the distinction between macroeconomic and

financial uncertainty is empirically relevant.
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1 Introduction and Related Literature

Since the influential paper of Bloom (2009), the business cycle relationship between un-

certainty and macroeconomic variables and the underlying transmission mechanism have

received extensive consideration.1

Three challenges come to the fore. First, most works usually employ structural vec-

tor autoregressions (SVARs) with some recursive identification scheme. The common

assumption is that uncertainty is exogenous, i.e. it does not respond contemporaneously

to economic variables, whereas economic variables react contemporaneously to uncer-

tainty.2 Recursive schemes are widespread due to the simplicity of implementation and

interpretation, but for uncertainty it is extremely challenging to defend them as convinc-

ing identification strategies.

In fact, the current evidence makes researchers unable to take up a position on the

direction of the causality between uncertainty and economic variables. On the contrary,

both directions of causality are conceivable and macroeconomic theory is also ambiguous

about the possible sign of the effects of uncertainty on the economy.

Uncertainty can affect the economy through firms’ behavior, which is influenced by

uncertainty because of (i) the real option argument (Bernanke, 1983; McDonald & Siegel,

1986); (ii) the delay of hiring and investment decisions (Bloom, 2009; Bloom et al., 2018;

Leduc & Liu, 2016); (iii) the interaction with financial frictions that impact on firms’

decisions (Arellano et al., 2018; Gilchrist et al., 2014; Alfaro et al., 2018). The uncer-

tainty can influence the economy also through precautionary savings (Basu & Bundick,

2017; Fernández-Villaverde et al., 2011). On the other hand, some scholars point out

that bad economic and/or credit conditions are likely to cause a rise in uncertainty

(Van Nieuwerburgh & Veldkamp, 2006; Bachmann & Moscarini, 2011; Fajgelbaum et

al., 2017; Brunnermeier & Sannikov, 2014; Atkinson et al., 2021; Plante et al., 2018).

Empirical contributions that allow for both directions of causality include Carriero et al.

(2021), Ludvigson et al. (2021), and Angelini et al. (2019). All these contributions show
1Bloom (2014) provides an excellent survey. A partial list of works consists of Bloom (2009),

Bachmann et al. (2013), Caggiano et al. (2014), Jurado et al. (2015), Rossi and Sekhposyan (2015),
Caldara et al. (2016), Baker et al. (2016), Basu and Bundick (2017), Cesa-Bianchi et al. (2018), Shin
and Zhong (2020), Carriero et al. (2018b), Bloom et al. (2018), Angelini et al. (2019), Ludvigson et al.
(2021), and Carriero et al. (2021).

2We use the terms exogenous (endogenous) as shorthand for predetermined (not predetermined)
within the period.
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that the direction of causality might depend on the uncertainty typology and measure of

choice. Additional literature points out that uncertainty can stimulate economic activity

(growth options theory): a mean-preserving spread in risk originated from an unbounded

upside combined with a limited downside can lead firms to invest and hire, since the rise

in mean preserving risk raises expected profits.3

A separate challenge is about the origins of uncertainty. Standard theories claim that

uncertainty originates from macroeconomic fundamentals, e.g. productivity, and that

such real economic uncertainty, when interacted with market frictions, decreases real ac-

tivity. However, it has been argued that uncertainty depresses the economy via its impact

on financial markets (Gilchrist et al., 2014), or through sources of uncertainty specific to

financial markets (Bollerslev et al., 2009). Furthermore, Ng and Wright (2013) discuss

that financial uncertainty –as distinct from macroeconomic uncertainty– could have a

pivotal role in recessions after 1982, both as a cause and as a propagation channel. The

challenge also arises because the theoretical literature has focused on volatility coming

from fundamentals, while empirical efforts have usually tested those frameworks employ-

ing uncertainty proxies that are strongly correlated with financial market variables. This

naturally leads to wonder whether it is macroeconomic uncertainty or financial uncer-

tainty (or both) to drive business cycle fluctuations. The current literature does not

disentangle the contributions of macroeconomic versus financial uncertainty to business

cycle fluctuations, nor it allows feedback between macroeconomic and financial uncer-

tainty. Exceptions are the small-scale models in Ludvigson et al. (2021) and Angelini et

al. (2019) and the contribution in Shin and Zhong (2020).

The final challenge is that there is high degree of comovement between indicators of

financial distress such as credit spreads and uncertainty proxies as both variables are “fast

moving”, as pointed out in several studies including Caldara et al. (2016), Brianti (2021),

Caggiano et al. (2021). It is therefore difficult to impose plausible zero contemporaneous

restrictions to identify these two disturbances. It is also difficult to impose sign restrictions

as uncertainty and financial shocks could have theoretically the same qualitative effects

on both prices and quantities.

This paper proposes a new approach to identification which allows to deal with the
3For instance, see Oi (1961), Hartman (1972), Abel (1983), Bar-Ilan and Strange (1996), Pástor and

Veronesi (2006), Kraft et al. (2018), Segal et al. (2015), and Fernández-Villaverde and Guerrón-Quintana
(2020).
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three issues above. The approach allows for endogeneity of uncertainty, i.e. for a causal

transmission channel going from uncertainty to the economic variables as well as the

opposite. It also allows to separately identify different sources of uncertainty, and to

disentangle uncertainty shocks from pure financial shocks. To our knowledge, this is the

first paper to tackle these issues in a unified framework.

Within a SVAR, the proposed identification scheme generalizes the Max Share Iden-

tification, i.e. optimizing the Forecast Error Variance (FEV) decomposition for a single

shock identification, to simultaneous identification of a multiplicity of shocks. While

traditional Max Share Identification4 is usually performed in combination with sign re-

strictions, we also introduce further constraints. Instead of constraining the FEV to a

single shock, we simultaneously restrict (a function of) the FEV of target variables to

more shocks. For example, consider the task of identifying a macroeconomic uncertainty

shock, a financial uncertainty shock, and a credit supply shock:5 the identifying assump-

tion is that (i) the three shocks must maximize a function of the total variation of the

three variables, (ii) subject to constraints that each shock of interest -say, macro uncer-

tainty shock- needs to explain the variation of the corresponding target variable -say, some

macro uncertainty proxy- more than the other target variables -say, financial uncertainty

proxy and credit spread-. While we focus on uncertainty and financial disturbances, our

identification and estimation toolkit is general, and can be applied in any SVAR where

scholars want to identify more shocks (as discussed in Section 2.4). Inequality constraints

on the FEV in (ii), which are an additional novelty to the literature, are tailored to our

empirical exercise. Depending on the application, restrictions in (ii) can be replaced by,

or combined with, sign restrictions.

The Max Share Identification for a single shock is a popular device. In our approach

instead the optimization constrains the FEV decomposition of different variables and

needs to be verified for all the shocks simultaneously. This is computationally more chal-

lenging, but has the advantage of (i) identifying simultaneously a multiplicity of shocks,

and (ii) being well-suited when we want to distinguish competing shocks: uncertainty dis-
4Scholars have been applying Max Share Identification, or some variations of it, to numerous appli-

cations: a very incomplete list includes Uhlig (2004) for technology and wage-push shocks, Francis et al.
(2014) for technology shocks, Barsky and Sims (2011) for news shocks, Mumtaz et al. (2018) for credit
shocks, Mumtaz and Theodoridis (2018) for inflation target shocks, Caldara et al. (2016) for uncertainty
and credit shocks, and Angeletos et al. (2020) for a variety of supply and demand shocks.

5A credit supply shock is defined as a shock to credit supply and measured through the credit spreads.
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turbances are a natural example. Researchers have been increasingly identifying shocks

simultaneously (Ludvigson et al., 2021; Brianti, 2021; Giacomini, Kitagawa, & Read,

2022; Cascaldi-Garcia & Galvão, 2020; Piffer & Podstawski, 2018; Furlanetto et al.,

2017; Mertens & Ravn, 2013). Recently, literature started stressing that individually

identified shocks are often correlated with other disturbances, and as such are not truly

structural. For instance, Cascaldi-Garcia and Galvão (2020) find that uncertainty and

news shocks, if singularly identified, are strongly correlated. Sequential, rather than si-

multaneous, identification comes with similar problems: sequentially identified shocks

tend to be correlated, unless some orthogonality condition is imposed. However, the

latter assumes some ordering restriction which usually have weak economic ground. For

example, Uhlig (2004) explicitly argues that the Max Share Identification of more shocks

implies further arbitrary orthogonalizations, making any economic interpretation hard.

Caldara et al. (2016) apply the Max Share Identification to sequentially identify uncer-

tainty and financial shocks, finding that changing the order of identification dramatically

affects the results, e.g. uncertainty can be both expansionary and recessionary. While

some identification strategies, such as sign restrictions and proxy SVARs, have toolkit for

simultaneous identification, the methodological contribution of this paper is to make the

Max Share Identification suitable for multiple shocks simultaneous identification.

Our identification strategy involves the solution of a constrained maximization prob-

lem, where the objective function is an equally weighted linear combination of the FEV of

the (target) variables of interest and the constraints are the inequality restrictions on the

FEV. We show that this corresponds to a non-convex quadratic optimization problem

on the columns of the rotation matrix transforming reduced-form residuals into struc-

tural shocks. However, we provide a flexible toolkit and establish mild conditions under

which the solution of the optimization problem exists and is unique. We develop sim-

ple algorithms to perform Bayesian estimation and inference, even though of course the

identification result and properties do hold also in a frequentist setting. While the main

text illustrates our machinery in the time domain, supplemental Appendix F shows that

its implementation in the frequency domain is fully feasible.

The approach also differs from Amir-Ahmadi and Drautzburg (2021) and Volpicella

(2022). Amir-Ahmadi and Drautzburg (2021) employ set-identification through ranking

restrictions on the impulse response functions, combined with standard sign restrictions.
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Volpicella (2022) puts sign restrictions and bounds on the FEV to set-identify a single

shock; on the contrary in this paper we point-identify shocks, do not place bounds, and

allow identification of a multiplicity of shocks.

We apply the proposed identification scheme to a SVAR model estimated with US

data. We find that both macroeconomic and financial uncertainty shocks act as negative

demand shocks, i.e. decrease the real activity and trigger a deflationary pressure. The

responses to the two shocks are quantitatively substantially different: macroeconomic

uncertainty has a stronger and more persistent effect on the real activity variables. We

also find evidence that separating macroeconomic from financial uncertainty is important,

as not doing so can dramatically distort the impulse responses.

Our results show that uncertainty is endogenous to some extent. In particular,

dismissing the feedback effect from the macroeconomy to macroeconomic uncertainty

changes the estimated responses in non trivial ways. This suggests that naive schemes

such as sign restrictions and recursive ordering are too restrictive. These results are in

line with Ludvigson et al. (2021) and Carriero et al. (2021). Angelini et al. (2019) instead

find that both macro and financial uncertainty are exogenous. Supplemental Appendix

C shows that ignoring the endogenous role of uncertainty also biases the estimation of

the effects of credit supply shocks on the economy. While the application illustrates our

methodology, its findings are interesting per se.

The paper is organized as follows. Section 2 introduces the identification strategy;

Section 3 presents the empirical application; Section 4 concludes. A separate supplemen-

tal Appendix provides full proofs, robustness checks, simulation exercises and additional

results.

2 Theoretical framework

Consider a SVAR(p) model

A0yt = a+

p∑
j=1

Ajyt−j + εt (2.1)

for t = 1, . . . , T, where yt is an n× 1 vector of endogenous variables, εt an n× 1 vector

white noise process, normally distributed with mean zero and variance-covariance matrix
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In, Aj is an n×n matrix of structural coefficient for j = 0, . . . , p. The disturbances εt are

mutually uncorrelated, and are therefore interpretable as structural shocks. The initial

conditions y1, . . . ,yp are given. Let θ = (A0,A+) collect the structural parameters,

where A+ = (a,Aj) for j = 1, . . . , p.

The reduced-form representation is a Vector Autoregression (VAR):

yt = b+

p∑
j=1

Bjyt−j + ut, (2.2)

where b = A−1
0 a is an n × 1 vector of constants, Bj = A−1

0 Aj, ut = A−1
0 εt denotes

the n × 1 vector of reduced-form errors. var(ut) = E(utu
′
t) = Σ = A−1

0 (A−1
0 )′ is the

n × n variance-covariance matrix of reduced-form errors. Let φ = (B,Σ) ∈ Φ collect

the reduced-form parameters, where B ≡ [b,B1, . . . ,Bp], Φ ⊂ Rn+n2p ×Ξ, and Ξ is the

space of symmetric positive semidefinite matrices.

We define the n× n matrix

IRh = Ch(B)A−1
0 (2.3)

as the impulse response at h-th horizon for h = 0, 1, . . . , where Ch(B) is the h-th co-

efficient matrix of (In −
∑p

h=1BhL
h)−1. Its (i, j)-element denotes the effect on the i-th

variable in yt+h of a unit shock to the j-th element of εt. As is well-known there are

several observationally equivalent A0 matrices, and expression (2.3) actually involves a

set of impulse responses.

To formalize this fact we follow Uhlig (2005) and define the set of all IRFs through an

n×n orthonormal matrix Q ∈ Θ(n), where Θ(n) characterizes the set of all orthonormal

n × n matrices. Uhlig (2005) show that {A0 = Q′Σ−1
tr : Q ∈ Θ(n)} is the set of

observationally equivalentA0’s consistent with reduced-form parameters, where Σ relates

to A0 by Σ = A−1
0 (A−1

0 )′, Σtr denotes the lower triangular Cholesky matrix with non-

negative diagonal coefficients of Σ. The likelihood function depends on φ and does

not contain any information about Q, leading to ambiguity in decomposing Σ. The

identification problem arises because there is a multiplicity of Q’s which deliver A0 given

φ. Specifically, the impulse response of variable i to shock j at horizon h, i.e. (i, j)-

element of IRh, can be expressed as e′iCh(B)ΣtrQej ≡ c′ih(φ)qj, where ei is the i-th
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column vector of In, qj is the j-th column of Q and c′ih(φ) represents the i-th row

vector of Ch(B)Σtr. Alternative identification schemes can be achieved by placing a

set of restrictions on Q. For example, imposing Q = In implies a recursive ordering

identification, i.e. the Cholesky decomposition, whereas sign restrictions specify a set of

admissible Q’s.

2.1 Sign restrictions

Assume that the researcher is interested in imposing some sign restrictions on the im-

pulse response vector to the j-th structural shock, and let shj denote the number of sign

restrictions on impulse responses at horizon h. In this case, the impulse response is given

by the j-th column vector of IRh = Ch(B)ΣtrQ, and the sign restrictions are

Shj(φ)qj ≥ 0,

where Shj(φ) ≡DhjCh(B)Σtr is a shj×n matrix andDhj is the shj×n selection matrix

that selects the sign-restricted responses from the n×1 response vector Ch(B)Σtrqj. The

nonzero elements ofDhj can be equal to 1 or to -1 depending on the sign of the restriction

on the impulse response of interest. By considering multiple horizons, the whole set of

sign restrictions placed on the j−th shock is

Sj(φ)qj ≥ 0. (2.4)

Specifically, Sj is a
(∑h̄j

h=0 shj

)
× n matrix defined by Sj(φ) =

[
S′0j(φ), . . . ,S′

h̄jj
(φ)
]′
.

Let IS ⊂ {1, 2, . . . , n} be the set of indices such that j ∈ IS if some of the impulse

responses to the j-th structural shock are sign-constrained. Thus, the set of all sign

restrictions is6

Sj(φ)qj ≥ 0, for j ∈ IS . (2.5)

2.2 Identification strategy

Our identification scheme identifies k ≤ n shocks j ∈ 1, . . . , k, denoted by qj = Qej,

where q′jqj̃ = 0 for j 6= j̃ is the standard orthogonality condition.

6Given the j-th shock, sign restrictions on A0 and A+ can be appended to equation (2.5), since they
can be expressed as linear inequalities on qj .
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In our empirical application we will set k = 3 and shocks of interest are those to

macroeconomic uncertainty, financial uncertainty, and credit supply. The identifying

assumption is that in the short-run (i) the three shocks must maximize a function of the

total variation of the three variables (a function of the FEV of the three variables) (ii)

subject to constraints that each shock of interest -say, macro uncertainty shock- needs to

explain the variation of the corresponding target variable -say, some macro uncertainty

proxy- more than the other target variables -say, financial uncertainty proxy and credit

spread-.

Importantly, this approach does not require the researcher to take a stance in re-

gards to the possible exogeneity or endogeneity of uncertainty: uncertainty can impact

on macro variables, and vice-versa. In fact, supplemental Appendix B shows that our

identification assumptions are consistent with DGPs regardless whether those frameworks

consider endogenous or exogenous uncertainty, and successfully recover the impulse re-

sponse functions of different DGPs.

2.2.1 Formal setup

In what follows we provide a formalization of the strategy described above. Let CFEV i
j (h̃)

denote the FEV at horizon h̃ of variable i explained by the j-th structural shock:

CFEV i
j (h̃) = q′jΥ

i
h̃
(φ)qj, (2.6)

where Υi
h̃
(φ) =

∑h̃
h=0 cih(φ)c′ih(φ)∑h̃
h=0 c

′
ih(φ)cih(φ)

is a n× n positive semidefinite matrix. Expression (2.6)

describes the percent contribution - expressed with a number in the interval [0, 1] - of the

shock j to the unexpected fluctuations of variable i at horizon h̃.

Without loss of generality, suppose that (i) j = 1 is the first shock, j = 2 is the second

shock, j = 3 is the third shock and so on; (ii) the n endogenous variables are ordered such

that i = 1 is the macroeconomic uncertainty variable, i = 2 is the financial uncertainty

variable, and i = 3 is the credit spreads. Define the following I−j = {1, . . . , k}/{j} as a

subset of the shocks of interest. The identification of Q1:k = [q1, q2, . . . , qk], with k = 3
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and j ∈ 1, 2, 3, requires to solve the following constrained optimization problem:7

Q∗1:k = arg max
Q1:k

k∑
i=1

q′iΥ
i
h̃
(φ)qi (2.7)

subject to

q′jΥ
j

h̃
(φ)qj ≥ q′jΥi

h̃
(φ)qj for j = 1, . . . , k, ∀i ∈ I−j, (2.8)

Sj(φ)qj ≥ 0, for j ∈ IS , (2.9)

and

Q′1:kQ1:k = In. (2.10)

In equation (2.7) and (2.8) h̃ is common across target variables i = 1, . . . , k, but of

course we can maximize and constrain the FEV of target variables at different horizons,

depending on the application.8

Note that in our application IS = ∅, i.e. no sign restrictions, but results for existence

and uniqueness of solution accommodates them. Thus, the optimization process involves

k variables only in the empirical exercise. For j = 1, we will identify the macroeconomic

uncertainty shock as the innovation that maximizes its contribution to the sum of the

FEV of the three target variables subject to the following constraints. Restrictions (2.8)

establish that (for j = 1) the contribution of the macroeconomic uncertainty shock to the

FEV of the macroeconomic uncertainty variable must be higher than the contribution

to the FEV of financial uncertainty variables and credit spreads (upon impact). Those

restrictions are instrumental to separate macroeconomic uncertainty shocks from financial

uncertainty and credit supply shocks.

It is worth stressing that the constraints in (2.8) are not automatically satisfied by
7Once columns 1 to k are identified, we can always construct orthogonal columns k + 1 to n.
8The literature has not reached a consensus on the nature and degree of persistence of uncertainty

shocks, and there is no uncontroversial theory and/or empirical evidence supporting specific claims.
For example, see opposite findings in Cerra and Saxena (2008), showing that financial shocks are more
persistent than uncertainty disturbances, and Berger et al. (2020) and Bonciani and Oh (2022), who find
that uncertainty shocks are very persistent. Carrière-Swallow and Céspedes (2013) find mixed results
across countries. Brianti (2021) argues that uncertainty is more or equally persistent than credit supply
shocks, while Caldara et al. (2016) find similar persistence. Thus, in order to restrict the system as less
as possible, identifying assumptions in the application are imposed on h̃ = 0. However, we re-estimate
the model up to h̃ = 6, that is a period of heightened economic uncertainty and credit deterioration,
rather than just a one-off spike, finding no significant differences.
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maximization in equation (2.7): the latter requires to maximize a sum, while the con-

straints are imposed on the components of the sum. In practice, the degree of relevance

of restrictions in (2.8) depends on the empirical exercise. In our application, we find that

inequality constraints on the FEV are pivotal to distinguish competing shocks, while

their omission biases the results (in supplemental Appendix B, see the discussion in the

simulation exercises and the fourth row in Figure 7 and 8). This is less likely the case

with the single shock Max Share Identification.9 Restrictions (2.10) ensure that the iden-

tified shocks are mutually orthogonal.10 Similarly for j = 2, 3, the problem (2.7)-(2.10)

identifies the financial uncertainty and the credit supply shock, respectively.

Our machinery, and below properties, are developed in the time domain. However,

an increasing number of scholars has recently been focusing on frequency domain. For

instance, Angeletos et al. (2020) argue that, unlike what is generally believed, targeting

6− 32 quarters recovers the business cycle in the frequency domain, but not in the time

domain. Thus, supplemental Appendix F illustrates the full feasibility of our toolkit in

the frequency domain.

2.2.2 Existence and Uniqueness of a solution

There is a trade-off between sharp identification and computation, and this is especially

true when using inequality constraints.11 In fact restrictions that are too tight can lead to

unfeasible or empty regions, i.e. the constraints are so demanding that they are rejected

in the data. In this section we provide sufficient conditions for the existence of a solution

to the constrained optimization problem. Doing so solves the trade-off by ensuring that

an identification scheme can be found which is both informative and not rejected by data.

Recall that q∗j for j − 1, . . . , k denotes the j-th column of the identified matrix Q∗1:k.

For j = 1, given the constraints in (2.8)-(2.10), we define the following functions:

f1 =
1

2
q′1
[
Υ2
h̃
(φ)−Υ1

h̃
(φ)

]
q1, f2 =

1

2
q′1
[
Υ3
h̃
(φ)−Υ1

h̃
(φ)

]
q1,

f3 =
1

2
q′1q1 +

1

2
, f4 =

1

2
q′1q1 −

1

2
.

9For instance, see Table 2 in Angeletos et al. (2020).
10The orthogonality restriction matters only if we restrict multiple shocks simultaneously. For indi-

vidual identification, we can always construct vectors in the Nullspace of the restricted shocks.
11See Amir-Ahmadi and Drautzburg (2021); Giacomini and Kitagawa (2020); Giacomini, Kitagawa,

and Volpicella (2022); Gafarov et al. (2018); Granziera et al. (2018); Volpicella (2022); Uhlig (2017).
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Similar functions can be trivially defined for j = 2, . . . , k and/or when sign restrictions are

imposed. In the case there were sign restrictions only, one could rely on the standard re-

sults in the literature to establish existence (Giacomini & Kitagawa, 2020; Amir-Ahmadi

& Drautzburg, 2021; Granziera et al., 2018).

We start with establishing a Gordan type alternative theorem,12 which will be instru-

mental to obtain the existence result.

Proposition 2.1 Assume j = 1. If @λ ∈ R4
+\{0} such that (∀q1 ∈ Rn)

∑4
i=1 λifi ≥ 0,

q∗1 exists.

The proof is provided in supplemental Appendix A. This proposition rules out that -

for a given shock - the restrictions contradict each other and more generally it rules out

that linear combinations of inequality constraints on the FEV violate the restrictions.

Note that this proposition alone establishes existence of a solution to (2.7)-(2.9), but

ignoring the orthogonality conditions (2.10). The satisfaction of orthogonality condition

is essential for identifying simultaneously all of the shocks, avoiding the well-known issue

that shocks identified one-at-a-time can be correlated to each other.

Next we establish the conditions for the existence of a solution to the constrained

optimization problem (2.7)-(2.10). Let σ denote a permutation of 1, . . . , k among the k!

possible permutations and σ(z) for z = 1, . . . , k denote the z-th element of the permuta-

tion σ. The following proposition holds:

Proposition 2.2 (Existence) If there exists a permutation σ such that

i) for j = σ(1) Proposition 2.1 is satisfied,

ii) conditions in Proposition 2.1 are met for all j = σ(2), . . . ,σ(k) in the Nullspace of

the previous j − 1 shocks,

then Q∗1:k exists.

Supplemental Appendix A provides a proof and a technical discussion. The permutation

σ is instrumental to find at least one matrix Q∗1:k such that its first k columns q∗1 , . . . , q∗k
satisfy Proposition 2.1 and are orthogonal to each other.

In supplemental Appendix E, we provide two algorithms checking for existence: an

accept-reject sampler and an analytical detection of emptiness. Those algorithms are
12Those theorems refer to stating that given two conditions, one of the two conditions is true.
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interesting per se as extend some contributions in the literature to multiple shocks iden-

tification. In the simulation exercise and empirical application the feasibility region is

always non-empty.

The constrained optimization problem (2.7)-(2.10) is non-convex as we are optimizing

over orthogonal vectors. Thus, in general we have a multiplicity of solutions which require

time consuming numerical optimization, without guarantee of finding a global optimum.

The proposition below establishes a sufficient condition for Q∗1:k to be unique, which in

turn implies that the numerical problem becomes easily tractable.

Proposition 2.3 (Uniqueness) Assume that Q∗1:k exists and is orthogonal. If c′ih(φ)qj ≥

0 for i = 1, . . . , k, j = 1, . . . , k and h = 0, . . . , h̃, then Q∗1:k is unique.13

Note that the above proposition would not change with the presence of sign restrictions

in (2.9) as the latter are linear inequality constraints in Q. The formal proof is provided

in supplemental Appendix A. Proposition 2.3 provides a sufficient condition that is both

easy to verify and allows for an economic interpretation. Specifically, if targeted variables

(in our application, macro uncertainty, financial uncertainty and credit spreads) react

positively to macro uncertainty, financial uncertainty and credit supply shocks, then Q∗1:k

is selected over a closed convex feasibility region, and uniqueness follows. In the empirical

application presented in this paper we never find a case in which the sufficient condition

of Proposition 2.3 was violated, but of course it may be not satisfied in some instances.

In such cases researchers can still implement our identification strategy, but they would

need to check for the possibility of multiple optima (this would need to be done in Step

3 of algorithm 2.1 below).

2.3 Implementation

The following Algorithm delivers the posterior distribution of the impulse response func-

tions (or any other structural object) of interest.

Algorithm 2.1

1: Draw φ from the posterior distribution of the reduced-form VAR.
13We present this proposition in terms of positive inequalities. However, uniqueness would still hold if

negative linear inequalities were satisfied.
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2: Check existence of a solution.

3: Obtain Q∗1:k by solving the optimization problem (2.7)-(2.10) and compute the im-

pulse response functions via (2.3).

4: Repeat Step 1-3, L times, e.g. L = 1000.

Algorithm 2.1 consists in a step of conventional sampling from the posterior of reduced-

form parameters (Step 1), a step for investigation of feasibility (Step 2, see algorithms in

supplemental Appendix E for its implementation), and a step of numerical optimization

(Step 3). The optimization involves a quadratic objective function, but can be reduced to

a much more tractable problem using Proposition 2.3. Note that Step 1 uses a posterior

distribution, which means it is based on a Bayesian estimation of the underlying reduced

form VAR. This choice is simply based on the observation that Bayesian VARs are widely

used in empirical macroeconomics. Still, Step 1 can be easily adapted to a frequentist

framework, for example using maximum likelihood estimates and invoking large sam-

ple results or using a bootstrap approach to produce draws from the VAR coefficients.

In either case the entire procedure would still remain valid, since the remaining steps

condition on the reduced-form parameters (φ) and do not depend on a prior over Q.

Finally, in those cases in which Proposition 2.3 cannot be verified researchers need to

ensure that Step 3 delivers a global - as opposed to a local - optimum, e.g. solving Step

3 from different starting points.

Supplemental Appendix B illustrates the effectiveness of our approach using a Monte

Carlo simulation.

2.4 Relation to alternative identification methods

The identification approach outlined above allows to avoid strong identification assump-

tions such as recursive orderings, and therefore it lends itself naturally to investigate

questions in which one wants to remain agnostic about the direction of the various causal

effects. The study of the effects of uncertainty shocks is just one example of such a situa-

tion, as both the theoretical literature and the empirical evidence so far are inconclusive

on whether uncertainty is an exogenous impulse or an endogenous response.

Importantly, our strategy identifies all of the shocks simultaneously, thereby sidestep-

ping the well-known issue that shocks identified one-at-a-time can be correlated to each
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other, a problem which is particularly relevant in, but not limited to, uncertainty litera-

ture. For instance, Cascaldi-Garcia and Galvão (2020) show that news and uncertainty

shocks tend to be correlated if identified separately; as such they are not truly structural.

Caldara et al. (2016) separate uncertainty and financial shocks by imposing different or-

dering restrictions, finding that the order hugely affects the results. Of course, solving

this problem comes at a cost. While standard Max Share Identification can be analyti-

cally solved by noting that the identified shock corresponds to the eigenvector with the

maximal eigenvalue associated to Υi
h̃
(φ), the cost of allowing simultaneous identifica-

tion of a multiplicity of shocks is that the optimization problem can become non-convex.

This is a consequence of optimizing a function over a multiplicity of orthonormal vectors.

In Section 2.2.2 we establish mild conditions under which the problem is tractable and

computationally fast.

A common use of the Max Share Identification is to reduce the identification uncer-

tainty implied by sign restrictions, i.e. employing sign restrictions as constraints in the

optimization problem. The same applies to our approach. For example, we can dis-

entangle demand (say, government spending) from supply (say, productivity) shocks by

using sign restrictions as constraints in the maximization problem. A positive demand

shock is expected to increase both quantities and prices, a positive supply shock requires

quantities and prices not to co-move. In the maximization, we would use target vari-

ables, e.g. long-run labour productivity and short-run government spending, for supply

and demand shocks, respectively. Our strategy can resolve further situations in which

set-identification schemes are not sufficient to satisfactorily pin down the desired shock.

For example Kilian and Murphy (2012) show that qualitative information beyond sign

restrictions is necessary to distinguish demand and supply shocks in the oil market. Sim-

ilarly, separation between news and surprise shocks requires to rank the relative effect

of those disturbances over target variables, see Amir-Ahmadi and Drautzburg (2021)

for an example of such a situation: since rank restrictions introduced by Amir-Ahmadi

and Drautzburg (2021) are linear inequalities in Q, they can be harmlessly nested in

(2.9). In order to separate credit and housing shocks Furlanetto et al. (2017) assume

that the former explain variation of total credits to households and firms more than the

contributions to the fluctuations in the real estate value, and the other way around. The

approach proposed in this paper achieves point-identification, avoiding the drawbacks of
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set-identification that affect most of the aforementioned studies (Baumeister & Hamilton,

2015; Giacomini & Kitagawa, 2020). Our machinery also naturally provides a new toolkit

for researchers concentrating on the idea that a number of shocks can explain most of

the movements in a possibly large set of macroeconomics aggregates. See the principal

component analysis literature and, for a recent contribution, Angeletos et al. (2020).

Finally, it is worth clarifying the differences between the approach pursued in this pa-

per and that of Volpicella (2022). The two approaches both use the FEV decomposition,

but are different conceptually and methodologically. In particular, Volpicella (2022) uses

bounds on the FEV decomposition, in combination with traditional sign restrictions, to

set-identify a single shock. The approach in this paper instead achieves point- (as opposed

to set-) identification of a variety of shocks (as opposed to one) which are guaranteed to

be mutually orthogonal. Furthermore, the approach of Volpicella (2022) requires the

use of sign restrictions, which are essential to economically label the shocks, while the

approach presented here can identify shocks without necessarily imposing any sign re-

strictions. Methodologically, Volpicella (2022) requires specifying exact ad-hoc bounds

on the FEV decomposition, while the empirical application here only imposes milder in-

equality constraints that require the FEV of each shock to be larger relative to that of all

the remaining shocks, but otherwise leave the FEV decomposition unbounded (and we

have also discussed that imposition of inequality restrictions on the FEV depends on the

empirical application). Note that we can use the set-identifying restrictions in Volpicella

(2022) as constraints in our optimization process: they are quadratic inequalities on Q,

mathematically they can be nested in restrictions (2.8).

2.5 Relation to macro models

In this section we briefly discuss our identification assumptions in relation to the existing

theoretical work on uncertainty. As discussed above (see Section 1 and the references

therein), a large macroeconomic literature has developed models in which uncertainty is

an exogenous source of fluctuations. In most of these models our identification assump-

tions are immediately satisfied, since they consider a single source of uncertainty and

assume that the macroeconomic uncertainty shock explains 100% of the within period

variation of macroeconomic uncertainty.

Our identification assumptions are also satisfied in those models that consider more
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than one source of uncertainty. For example, Shin and Zhong (2020) build upon Basu

and Bundick (2017) and Gertler and Karadi (2011) to construct a DSGE model with

financial frictions (and credit supply shocks), exogenous macroeconomic uncertainty (as

TFP volatility), and exogenous financial uncertainty (as capital quality volatility). Our

identifying restrictions are confirmed by employing both the baseline parameterization in

Shin and Zhong (2020)14 and their battery of alternative calibrations15

Finally, there is some more recent literature modeling uncertainty as an endogenous

response. In particular, Atkinson et al. (2021) depart from a Cobb-Douglas production

function and suggest that complementarity between capital and labor inputs can generate

endogenous uncertainty because the concavity in the production influences how output

responds to productivity shocks.16 However, even in that case credit shocks are not

able to explain short run fluctuations of the uncertainty proxy more than uncertainty

disturbances, which is in line with our identification approach.

3 Empirical application

3.1 Specification and data

We now turn to our empirical application. Evaluating the relationship between economic

variables and uncertainty needs selecting both a concept and metric of uncertainty. In

the baseline model, we employ the Chicago Board Options Exchange S&P 100 Volatility

Index as a measure of financial uncertainty and the the measure developed by Jurado

et al. (2015) (JLN hereafter) as a measure of macroeconomic uncertainty. We check the

robustness of our results to competing measures: for financial uncertainty, we also con-

sider the measures of Carriero et al. (2018b) and Jurado et al. (2015); for macroeconomic

uncertainty, we also use the measure of Carriero et al. (2018b).

Our baseline reduced form model is a VAR estimated with US monthly data ranging

from from 1962m7 to 2016m12. We assume 7 lags17 and a diffuse Normal Inverse Wishart

prior.18 The VAR includes 12 variables taken from the FRED database: macroeconomic
14See Table A-7 of their paper.
15See Section D.2.1 of the their paper.
16When matching labor share and uncertainty moments, they found 16% of the volatility of uncertainty

is endogenous in the short run.
17This has been selected by maximizing the marginal likelihood.
18The prior is Σ ∼ IW(Ψ, d) and B|Σ ∼ N (0,Σ⊗Ω), where Ψ = In is the location matrix, d = n+1

17



uncertainty (JLN), financial uncertainty (VXO), credit spreads (CS), number of non-farm

workers (PAYEM), industrial production (IP), weekly hours per worker (HOURS), real

consumer spending (SPEND), real manufacturers’ new orders (ORDER), real average

earnings (EARNI), PCE price index (PCEPI), variation of federal funds rate (FFR),

S&P 500 (S&P). The credit spread is measured as the difference between the BAA Cor-

porate Bond Yield and the 10-year Treasury Constant Maturity rate; results are robust

to employing the excess bond premium used in Caldara et al. (2016) and developed by

Gilchrist and Zakrajšek (2012). All the variables enter the model growth rates, except

for ORDER, PCEPI, FFR, CS, VXO, and JLN which enter in levels. All the variables

are demeaned prior to estimation. In order to facilitate comparisons with other studies,

the impulse responses are expressed in percentage changes with respect to the levels.

This implies that for those variables which were differenced the impulse responses are

cumulated and the long run effects of transitory shocks do not vanish.

Supplemental Appendix D provides further robustness checks, including re-estimation

by explicitly controlling for a series of demand and supply shocks and a discussion of the

historical narrative of macro vs financial uncertainty and financial uncertainty vs credit

shocks. For example, from January 1990 – April 2022 using monthly data from FRED, the

correlation between the VIX and the BAA 10-year spread is around 0.65, but we are still

able to tease out time periods where credit shocks were small but financial uncertainty

shocks were large (or vice versa).

3.2 The Effects of uncertainty shocks

Figure 1 and Figure 2 show the impulse responses to macro and financial uncertainty

shocks, respectively. Uncertainty has a strong recessionary effect on employment, in-

dustrial production, hours worked, consumer spending, investment, and earnings; the

financial conditions also deteriorate, as shown by the response of stock market and credit

spreads. The shock leads to expansionary monetary policy trying to counteract the de-

pressive effect of uncertainty. Notably, shocks to macroeconomic uncertainty increase

financial uncertainty, and vice-versa.

To facilitate comparisons, Figure 3 overlays the impulse responses shown in Figure

1 and 2. The effects of macroeconomic and financial uncertainty are qualitatively com-

is a scalar degrees of freedom hyperparameter and Ω = Inp+1 is the variance-covariance matrix of B.
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parable but there are some quantitative differences. For example, the recessionary effect

on real activity variables seem more pronounced following macroeconomic uncertainty

shocks, while credit spreads increase more with financial uncertainty shocks. In order

to distinguish identified uncertainty shocks from demand type shocks, in supplemental

Appendix D we (i) re-estimate the model by controlling for a series of demand and supply

shocks, finding that the results are unchanged and (ii) show that the correlation between

our identified uncertainty shocks and demand and supply shocks are not statistically

significant.

We find a strong evidence in favor of a negative response of prices,19 that is short-

lived for macroeconomic uncertainty shocks but more persistent for financial uncertainty

shocks, suggesting that uncertainty disturbances mimic demand shocks, namely they trig-

ger a recession and a deflationary pressure on the economy. The slightly looser response

of monetary policy for financial uncertainty might be driven by the more significant drop

in prices relative to macroeconomic uncertainty.

This pronounced reduction in prices is in contrast with the existing empirical evidence

on the impact of uncertainty on inflation, which is typically weak and rather mixed.

Caggiano et al. (2014), Fernández-Villaverde et al. (2015), Leduc and Liu (2016), Basu

and Bundick (2017) provide some empirical evidence that uncertainty is deflationary,

while Mumtaz and Theodoridis (2015) find the opposite result. Carriero et al. (2018b) and

Katayama and Kim (2018) argue that the effect of uncertainty on prices is not significant;

the international evidence in Carriero et al. (2018a) suggests that the reaction of prices is

country-specific and heterogeneous across the alternative measures of prices. While the

effects of uncertainty on prices are different across these contributions, they are all based

on simple recursive identification schemes: in most of these contributions uncertainty is

modeled as exogenous.

3.2.1 Endogenous uncertainty?

Since our scheme allows for a contemporaneous feedback effect from economic and fi-

nancial variables to uncertainty, it provides a natural ground to look into the issue of

endogeneity of uncertainty. In order to tackle this question, we re-estimate the model

adding a further restriction. Specifically we assume that each measure of uncertainty
19Using inflation rate provides similar results.
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cannot be contemporaneously affected by structural shocks other than its own shock,

i.e. uncertainty is exogenous. This is equivalent to order uncertainty first in a Cholesky

decomposition scheme.

Panels (a)-(l) in Figure 4 display the responses to macroeconomic uncertainty shocks

for the baseline identification (black line) and when macroeconomic uncertainty is as-

sumed to be exogenous (red line): imposing exogeneity clearly changes several impulse

response functions, which supports the view that macroeconomic uncertainty is endoge-
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nous to some extent. On the other hand, panels (a′)-(l′) display the responses to financial

uncertainty shocks for the baseline identification (black line) and when financial uncer-

tainty is assumed to be exogenous (red line): in this case the evidence in support of

endogeneity is weaker.

The pattern shown in Figure 4 is in line with Ludvigson et al. (2021), who argue

that while financial uncertainty is mainly exogenous, macroeconomic uncertainty presents

some endogeneity. However, such a conclusion is not clear-cut in the literature. For
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example Angelini et al. (2019) find that both macroeconomic and financial uncertainty are

mostly exogenous, and Carriero et al. (2021) point out that macroeconomic uncertainty

displays some endogeneity, though more at quarterly than monthly frequency.20

Each study above adopts a different identification strategy. Ludvigson et al. (2021)

use a small-scale model and a set-identification approach based on narrative restrictions
20In unreported results news-based policy uncertainty as proxy for macro volatility turns out to be

endogenous.
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requiring the shocks to be consistent with some historical episodes and correlated with

some external instruments. Instead, we use a large-scale model, which reduces the prob-

lems of possible omitted variable bias, and a point-identification approach, which avoids

the problems inherent in set-identification discussed e.g. in Giacomini et al. (2021).21 On
21Ludvigson et al. (2021) employ bootstrap to construct confidence intervals for the impulse response

functions, but their frequentist validity is unknown. The fact that confidence intervals are presented
for a specific point-estimate only (rather than for the identified sets as such) makes hard to evaluate
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the one hand, for our choice of observables, we implement their methodology, finding that

both macro and financial uncertainty do not have real effects. This is expected given the

set-identification feature of their machinery. On the other hand, we adapt our strategy

to their 3-variable model, i.e. macro and financial uncertainty, industrial production: we

find that both typologies of uncertainty have recessionary effects, and macro uncertainty

is endogenous to industrial production, unlike financial uncertainty.

Angelini et al. (2019) also use a small-scale model in which there are no proxies

for financial conditions. They achieve identification by assuming that in the sample

preceding January 2008 financial uncertainty shocks could neither contemporaneously

impact on nor been impacted by macro variables directly.22 However, an indirect channel

on real variables through the impact from financial uncertainty to macro uncertainty is

allowed since the Great Moderation. Differently from them, we never assume exogeneity

of financial uncertainty, not even in some sub-sample, and we use a large-scale model

which includes financial variables and a credit channel. The latter is relevant, as we shall

see in supplemental Appendix C, to disentangle uncertainty shocks from pure financial

shocks.

Carriero et al. (2021) employ a large model and achieve point-identification exploiting

heteroskedasticity in the error terms of the SVAR. However their approach has a major

drawback insofar their model does not include macroeconomic and financial uncertainty

in the same unified framework. As we shall see in section 3.2.2 such a choice does not

guarantee that the macroeconomic and financial uncertainty shock are mutually orthog-

onal, which can lead to substantial distortions in the estimated responses. Furthermore,

their approach requires an ordering restriction on the block of macroeconomic variables

in which pure financial shocks are not explicitly identified. Instead, the approach of this

paper allows to identify shocks to financial and macroeconomic uncertainty which are

orthogonal by construction, and to disentangle them from pure financial shocks.

Another nice feature of our framework is that it allows for formal tests of exogeneity.

We formally test the exogeneity restrictions, with the null being (q∗1 )′Υ1
0(φ)q∗1 = 1

for macroeconomic uncertainty and (q∗2 )′Υ2
0(φ)q∗2 = 1 for financial uncertainty, and

we find that exogeneity is rejected at 1% significance level for macro uncertainty. For

the effect of sample bias and identification uncertainty in their setting. On the other hand, Bayesian
inference naturally follows in our point-identified model.

22This is an intriguing assumption because financial markets are usually expected to react fast to news,
while macroeconomic variables are relatively slower (Gertler & Karadi, 2015; Lettau et al., 2002).
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financial uncertainty, exogeneity in not rejected when we consider real variables only; on

the other hand, exogeneity is rejected when we take financial variables (credit spreads

and stock market) into account. We then conclude that financial uncertainty is likely to

be exogenous to real economy, but endogenous to financial conditions.

3.2.2 Uncertainty and its sources

In the next experiment we evaluate the importance of having both a measure of macroe-

conomic and a measure of financial uncertainty in the model.23

Panels (a)-(l) in Figure 5 display the responses to macroeconomic uncertainty shock

for the baseline identification (black line) and when the response of financial uncertainty

is muted (zero response) for 6 months (red line).24 Similarly, panels (a′)-(l′) show the

responses to financial uncertainty shock for the baseline identification (black line) and

when the response of macroeconomic uncertainty is muted (red line). Our results show

that omitting either one of the two uncertainty measures can lead to distortions in the

estimated responses. In particular, neglecting this channel seems to attenuate the es-

timated impact of uncertainty. More formally, in our framework we always reject the

hypothesis of zero impact response of macroeconomic (financial) uncertainty to financial

(macroeconomic) disturbance.

3.2.3 The financial channel

Some contributions argue that financial conditions play a key role in amplifying and

transmitting uncertainty shocks. For example, Arellano et al. (2018), Christiano et al.

(2014), and Gilchrist et al. (2014) develop models featuring a financial channel in which

the cost of external finance goes up in reaction to an increase in uncertainty; Alfaro et

al. (2018) find that financial frictions can double the recessionary effect of uncertainty.

On the other hand, Brunnermeier and Sannikov (2014) emphasize that a worsening of

borrowers’ financial position leads to higher uncertainty. Caldara et al. (2016), Brianti

(2021), and Caggiano et al. (2021) find evidence that deterioration of financial conditions

magnify the impact of uncertainty shocks on real activity.
23Ludvigson et al. (2021) and Shin and Zhong (2020) use set-identification schemes to separate macro

and financial uncertainty shocks. Both papers find differences in the responses of the economy to these
two types of shocks.

24We try horizons other than 6, and the results are qualitatively unchanged.
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horizon(monthly)Figure 5: Baseline scenario vs shutting down the channel between macro and financial
uncertainty. Panels (a)-(l) display the responses to macroeconomic uncertainty shock for
the baseline identification (black line) and when the response of financial uncertainty is
muted (red line). Panels (a′)-(l′) show the responses to financial uncertainty shock for the
baseline identification (black line) and when the response of macroeconomic uncertainty
is muted (red line). The blue solid line is the zero line. The shock size is set to one
standard deviation.

In light of these contributions we investigate the role of financial channel. Figure 6

compares the responses to macro (panels (a)-(l)) and financial (panels (a′)-(l′)) uncer-

tainty shock for the baseline identification (black line) and for an alternative model in

which the financial channel is shut down (red line) by imposing that there is no contem-

poraneous feedback between financial variables (credit spreads and stock market) and

26



0 20 40

−
0.

6
−

0.
4

−
0.

2
0.

0
(a) PAYEM

im
pu

ls
e 

re
sp

on
se

0 20 40

−
1.

0
−

0.
6

−
0.

2

(b) IP

0 20 40

−
0.

20
−

0.
10

0.
00

(c) HOURS

0 20 40

−
0.

40
−

0.
25

−
0.

10

(d) SPEND

0 20 40

−
0.

01
0

−
0.

00
4

0.
00

2

(e) ORDER

0 20 40

−
0.

20
−

0.
10

0.
00

(f) EARNI

0 20 40

−
0.

15
−

0.
05

0.
05

(g) PCEPI

im
pu

ls
e 

re
sp

on
se

0 20 40

−
0.

25
−

0.
10

0.
00

(h) FFR

0 20 40

−
0.

02
0

−
0.

00
5

0.
01

0

(i) S&P

0 20 40

0.
00

0.
02

0.
04

(j) JLN

0 20 40

0.
0

0.
4

0.
8

(k) VXO

0 20 40

0.
00

0.
04

0.
08

(l) CS

0 20 40

−
0.

4
−

0.
2

0.
0

(a') PAYEM

im
pu

ls
e 

re
sp

on
se

0 20 40

−
0.

5
−

0.
3

−
0.

1
0.

1

(b') IP

0 20 40

−
0.

20
−

0.
10

0.
00

(c') HOURS

0 20 40

−
0.

20
−

0.
05

0.
10

(d') SPEND

0 20 40

−
0.

01
0

0.
00

0

(e') ORDER

0 20 40

−
0.

25
−

0.
15

−
0.

05

(f') EARNI

0 20 40

−
0.

30
−

0.
15

0.
00

(g') PCEPI

horizon(monthly)

im
pu

ls
e 

re
sp

on
se

0 20 40

−
0.

25
−

0.
15

−
0.

05

(h') FFR

horizon(monthly)

0 20 40

−
0.

03
−

0.
01

0.
01

(i') S&P

horizon(monthly)

0 20 40

−
0.

00
2

0.
00

2

(j') JLN

horizon(monthly)

0 20 40

0.
0

1.
0

2.
0

3.
0

(k') VXO

horizon(monthly)

0 20 40

0.
00

0.
04

0.
08

0.
12

(l') CS

horizon(monthly)Figure 6: Financial channel. The figure reports the posterior median of the impulse
response functions to macro (panels (a)-(l)) and financial (panels (a′)-(l′)) uncertainty
shocks for the baseline identification (black line) and when the financial channel is shut
down (red line). The blue solid line is the zero line. The shock size is set to one standard
deviation.

uncertainty. The picture emerging is one in which the financial channel seems relevant

in the transmission mechanism of financial uncertainty shocks; its role is attenuated for

macro uncertainty.

We also identify and estimate the effect of credit supply (financial) shocks. Those are

recessionary and ignoring the endogenous role of uncertainty leads to under-estimating

their effects. To save space, they can be found in supplemental Appendix C
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4 Conclusions

This paper developed a novel multiple shocks identification scheme for SVARs, based on

generalizing the Max Share Identification to simultaneous identification of a multiplicity

of shocks. Our approach overcomes some drawbacks induced by individually identified

shocks, i.e. those shocks (i) tend to be correlated to each other or (ii) can be separated

under orthogonalizations with weak economic ground. We characterized the properties of

this approach, such as existence and uniqueness of a solution, and provided an algorithm

for its implementation. The toolkit developed in this paper can be applied to any SVAR

where standard ordering and sign restrictions are not desirable or sufficient to identify all

of the shocks. We used the approach and US data to investigate the effects of uncertainty

allowing for endogeneity. We found that some variables have a significant contempora-

neous feedback effect on macroeconomic uncertainty, and overlooking this endogenous

channel can lead to distortions. On the other hand, our results suggest that financial un-

certainty is likely to be an exogenous source of business cycle fluctuations. Supplemental

Appendix C shows that pure financial shocks can have attenuated effects if one does not

take into account the endogeneity of uncertainty.
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