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Uncertainty about the choice of identifying assumptions is common in causal

studies, but is often ignored in empirical practice. This paper considers uncer-

tainty over models that impose different identifying assumptions, which can lead

to a mix of point- and set-identified models. We propose performing inference

in the presence of such uncertainty by generalizing Bayesian model averaging.

The method considers multiple posteriors for the set-identified models and com-

bines them with a single posterior for models that are either point-identified or

that impose nondogmatic assumptions. The output is a set of posteriors (post-

averaging ambiguous belief ), which can be summarized by reporting the set of

posterior means and the associated credible region. We clarify when the prior

model probabilities are updated and characterize the asymptotic behavior of the

posterior model probabilities. The method provides a formal framework for con-

ducting sensitivity analysis of empirical findings to the choice of identifying as-

sumptions. For example, we find that in a standard monetary model one would

need to attach a prior probability greater than 0.28 to the validity of the assump-

tion that prices do not react contemporaneously to a monetary policy shock, in

order to obtain a negative response of output to the shock.
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1. Introduction

The choice of identifying assumptions is the crucial step that allows researchers to draw
causal inferences using observational data. This is often a controversial choice, and
there can be uncertainty about which assumptions to impose from a menu of plausible
ones, but this uncertainty and its effects on inference are typically ignored in empiri-
cal work. This paper proposes a formal framework for sensitivity analysis via Bayesian
model averaging in the presence of uncertain identification, which we characterize as
uncertainty over a class of models that impose different sets of identifying assumptions.
The class of models can include ones where parameters are set-identified, which occurs
when the assumptions are underidentifying or take the form of inequality restrictions.
For these models, we advocate adopting the multiple-prior approach of Giacomini and
Kitagawa (2021). In our context, the approach has the additional advantage of isolat-
ing the component of each model that depends on the identifying restrictions, making
it possible, for example, to compare models that only differ in the restrictions they im-
pose.

The paper makes both a methodological and a theoretical contribution. The meth-
odological contribution is to extend Bayesian model averaging/selection to allow for
models characterized by multiple priors (associated here with set identification). The
theoretical contribution is to clarify how the different components of the models affect
inference in terms of model averaging/selection in finite samples and asymptotically.

There are several examples in economics where empirical researchers face uncer-
tainty about identifying assumptions that lead to point- or set-identification of a com-
mon causal parameter of interest. The first is macroeconomic policy analysis based
on structural vector autoregressions (SVARs), where assumptions include causal order-
ing restrictions (Sims (1980)) and long-run neutrality restrictions (Blanchard and Quah
(1993)). Subsets of these assumptions deliver set-identified impulse-responses, as do
sign restrictions (Canova and Nicolo (2002), Faust (1998), and Uhlig (2005)). The sec-
ond example is microeconometric causal effect studies with assumptions such as se-
lection on observables (Ashenfelter (1978) and Rosenbaum and Rubin (1983)), selec-
tion on observables and unobservables (Altonji, Elder, and Taber (2005)), exclusion
and monotonicity restrictions in instrumental variables methods (Imbens and Angrist
(1994), yielding set-identification of the average treatment effect), and monotone in-
strument assumptions (Manski and Pepper (2000), also yielding set-identification). The
third example is missing data with assumptions such as missing at random, Bayesian
imputation (Rubin (1987)), and unknown missing mechanism (Manski (1989), yielding
set-identification). Finally, estimation of structural models with multiple equilibria re-
lies on assumptions about the equilibrium selection rule, with different assumptions (or
lack thereof) delivering point- or set-identification (e.g., Bajari, Hong, and Ryan (2010),
Beresteanu, Molchanov, and Molinari (2011), and Ciliberto and Tamer (2009)).

The common practice in empirical work is to report results based on what is deemed
the most credible set of identifying assumptions, or sometimes, based on a small num-
ber of alternative assumptions, viewed as an informal sensitivity analysis. Our method
provides a formal framework for investigating the sensitivity of empirical findings to
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specific identifying assumptions and/or for aggregating results based on different iden-
tifying assumptions, which can be more practical than reporting separate results when
there are many restrictions.1

The idea of model averaging has a long history in econometrics and statistics since
the pioneering works of Bates and Granger (1969) and Leamer (1978). The literature
has considered Bayesian approaches (see, e.g., Hoeting, Madigan, Raftery, and Volin-
sky (1999)), frequentist approaches (Hansen (2007, 2014), Hjort and Claeskens (2003),
Liu and Okui (2013)), and hybrid approaches (Hjort and Claeskens (2003), Kitagawa and
Muris (2016), and Magnus, Powell, and Prüfer (2010)), but none of them allows for set-
identification/multiple priors in any candidate model.

This paper takes a Bayesian perspective. The standard approach to Bayesian model
averaging delivers a single posterior that is a mixture of the posteriors of the models,
with weights equal to the posterior model probabilities.2 This approach could in prin-
ciple be extended to our context if one could obtain a single posterior for every model,
including set-identified ones. Assuming a single prior under set identification is how-
ever problematic from a robustness viewpoint as the choice of a single prior can lead
to spuriously informative posterior inference for the object of interest (Baumeister and
Hamilton (2015)). The severity of the problem is magnified by the fact that the effect
of the prior choice persists asymptotically, unlike in the case of point-identified models
(Moon and Schorfheide (2012), Poirier (1998), among others).

The key innovation of our approach to Bayesian model averaging is that we do not
assume availability of a single posterior for the set-identified models. Rather, we allow
for multiple priors (an ambiguous belief ) within the set-identified models (as in Gia-
comini and Kitagawa (2021)), and then combine the corresponding multiple posteriors
with single posteriors for models that are either point-identified or that impose nondog-
matic identifying assumptions in the form of a Bayesian prior for the structural param-
eters (as in Baumeister and Hamilton (2015)). The output of the procedure is a set of
posteriors (post-averaging ambiguous belief ), that are mixtures of the single posteriors
and any element of the set of multiple posteriors, with weights equal to the posterior
model probabilities. To summarize and visualize the post-averaging ambiguous belief,
one can report the set of posterior quantities (e.g., the mean or median) and the asso-
ciated credible region (an interval to which any posterior in the class assigns a certain
credibility level), which are easy to compute in practice.

The method proposed in this paper provides a formal framework for conducting
sensitivity analysis of causal inferences to the choice of identifying assumptions. First,
one can perform reverse-engineering exercises that compute the minimal prior prob-
ability one would need to attach to a set of identifying assumptions in order for the

1For example, the SVAR literature often considers models with a large number of sign restrictions (e.g.,
Amir-Ahmadi and Uhlig (2015), Korobilis (2020), Furlanetto, Ravazzolo, and Sarferaz (2019), and Matthes
and Schwartzman (2019)).

2When a constrained model is a lower dimensional submodel of a large model, performing inference
conditional on the constrained model may suffer from the Borel paradox; see, for example, Drèze and
Richard (1983). Bayesian model averaging offers a practical way to avoid the Borel paradox in such con-
text.
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averaging to obtain a certain conclusion (e.g., that the set of posterior means for the
impact response of output to a monetary policy shock is contained in the negative
real half-line). This exercise has a similar motivation as the breakdown frontier analy-
sis in Horowitz and Manski (1995) and Masten and Poirier (2020). Second, when a set-
identified model nests a point-identified model, our method can be used to assess the
posterior sensitivity in the point-identified model with respect to perturbations of the
prior in the direction of relaxing some of the point-identifying assumptions. This exer-
cise can be seen as an example of the ε-contamination sensitivity analysis developed in
Huber (1973) and Berger and Berliner (1986). Our approach to sensitivity analysis there-
fore differs from and complements the approaches proposed by Giacomini, Kitagawa,
and Uhlig (2019) and Ho (2019), which specify the class of priors as a Kullback–Leibler
neighborhood of a benchmark prior.

Our method can also be viewed as bridging the gap between point- and set-
identification. When focusing solely on a point-identified model, a researcher who is
not fully confident about the choice of identifying assumptions may doubt the robust-
ness of the conclusions. On the other hand, discarding some of the point-identifying
assumptions and reporting estimates of the identified set may appear “excessively ag-
nostic,” and often results in uninformative conclusions. Our averaging procedure rec-
onciles these two extreme representations of the posterior beliefs by exploiting the prior
weights that one can assign to alternative sets of identifying assumptions.

This paper contributes to the growing literature on Bayesian inference for partially
identified models (Giacomini and Kitagawa (2021), Kline and Tamer (2016), Moon and
Schorfheide (2012)). We follow the multiple-prior approach to model the lack of knowl-
edge within the identified set as in Giacomini and Kitagawa (2021). When a set-identified
model is the only model considered, the set of posteriors generated by the approach
provides posterior inference for the identified set. When there is uncertainty about the
identifying assumptions, however, the usual definition of identified set is not available
without conditioning on the model. The multiple prior viewpoint has an advantage in
this case since the set of posteriors has a well-defined subjective interpretation even in
the presence of model uncertainty.

The paper makes two main analytical contributions to the literature on Bayesian
model selection and averaging. First, we clarify under which conditions the prior model
probabilities can be updated by data. We show that the updating occurs if some models
are “distinguishable” for some distribution of data and/or the priors for the reduced-
form parameters differ across models. Second, we investigate the asymptotic properties
of the posterior model probabilities and of the averaging method. We show that, when
only one model is consistent with the true distribution of the data, our method asymp-
totically assigns probability one to it. When multiple models are observationally equiva-
lent and “not falsified” at the true data generating process, the posterior model probabil-
ities asymptotically assign nontrivial weights to them. We clarify what part of the prior
input determines the asymptotic posterior model probabilities in such case. The consis-
tency property of Bayesian model selection has been well studied in the statistics litera-
ture (e.g., Claeskens and Hjort (2008) and references therein), but there is no discussion
about the asymptotic behavior of posterior model probabilities when the models differ
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in terms of the identifying assumptions but can be observationally equivalent in terms
of their reduced form representations. These new results therefore could be of separate
interest.

The empirical application in this paper considers SVAR analysis with uncertainty
over the classes of identifying assumptions typically used in empirical work. The choice
of identifying assumptions has often been a source of controversy in this literature,
and researchers have differing opinions about their credibility. To our knowledge, little
work has been done on multimodel inference in the SVAR literature, and the methods
proposed in this paper could therefore prove helpful in reconciling the controversies
about the identifying assumptions that are widespread in this literature. As an example,
the empirical application documents the high sensitivity of the conclusion in standard
monetary SVARs that output decreases after a contractionary monetary policy shock to
the choice of identifying assumptions.

The remainder of the paper is organized as follows. Section 2 illustrates the motiva-
tion and the implementation of the method in the context of a simple model. Section 3
presents the formal analysis in a general framework and provides a computational algo-
rithm to implement the procedure. Section 4 applies our method to impulse response
analysis in monetary SVARs. The Appendix in the Online Supplementary Material (Gia-
comini, Kitagawa, and Volpicella (2021)) contains proofs and details about computation.

2. Illustrative example

We present the key ideas and the implementation of the method in a price-quantity
static model, subject to common types of identifying assumptions. The model is

A

(
qt
pt

)
=
(
εdt
εst

)
, A=

(
a11 a12

a21 a22

)
, t = 1, � � � , T , (2.1)

where (qt , pt ) are price and quantity of a certain good/service in a given market and
(εdt , εst ) is an i.i.d. normally distributed vector of demand and supply shocks with
variance-covariance the identity matrix. A is the structural parameter and the contem-
poraneous impulse responses are elements of A−1. For example, in the labor market
(qt , pt ) can be replaced by employment and wages, respectively.

The reduced-form model is indexed by �, the variance-covariance matrix of (qt , pt ),
which satisfies � = A−1(A−1 )′. Denote its lower triangular Cholesky decomposition
with nonnegative diagonal elements by �tr = (σ11 0

σ21 σ22

)
with σ11 ≥ 0 and σ22 ≥ 0, and

define the reduced form parameter as φ = (σ11, σ21, σ22 ) ∈ � = R+ × R × R+.3 Let the
mapping from the structural parameter to the reduced-form parameter be denoted by
φ = g(A).

Suppose the object of interest is the response of the first variable to a unit positive
shock in the first variable, α ≡ (1, 1)-element of A−1. Without identifying assumptions,
the structural parameter is set-identified since knowledge of the reduced-form param-
eter φ cannot uniquely pin down the structural parameter (φ = g(A) is a many-to-one

3The positive semidefiniteness of � does not constrain the value of φ other than σ11 ≥ 0 and σ22 ≥ 0.
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mapping). Imposing assumptions can lead to a set or a point for α, depending on the
type and number of assumptions.

A Bayesian model is the combination of a likelihood and a prior input. The prior
input can be either a single prior or multiple priors. In point-identified models, the prior
input is a single prior for the structural parameter A, which implies the prior for the
reduced-form parameter φ. In set-identified models, one could either specify a single
prior forA (e.g., as a way of imposing nondogmatic identifying assumptions) or consider
multiple priors as in Giacomini and Kitagawa (2021). In the latter case, a model is the
combination of a likelihood, a single prior for the reduced-form parameter φ (which is
revised) and multiple priors for A|φ (which are not revised).4

The division that we introduce in the paper is between single-prior models (which
could be point- or set-identified) and multiple-prior models (which are always set-
identified). We now illustrate how this interplays with identifying assumptions in two
examples.

2.1 Dogmatic identifying assumptions

First, consider dogmatic identifying assumptions, which are equality or inequality re-
strictions on (functions of) the structural parameter that hold with probability one.

Scenario 1: Candidate models

• Model Mp (point-identified): The demand is inelastic to price, a12 = 0.

• Model Ms (set-identified): The price elasticity of demand is nonpositive, a12 ≥ 0, and
the price elasticity of supply is nonnegative, a21 ≤ 0.

Model Mp restricts A to be lower-triangular, as in the classical causal ordering as-
sumptions of Sims (1980) and Bernanke (1986). Combined with the sign normalization
restrictions requiring the diagonal elements of A to be nonnegative, the assumption
implies that the impulse responses can be identified by A−1 = �tr. The parameter of
interest is α= αMp(φ) ≡ σ11.

Model Ms imposes sign restrictions that only set-identify α. The Appendix in the
Online Supplementary Material shows that the identified set for α is

ISα(φ) ≡

⎧⎪⎪⎨
⎪⎪⎩

[
σ11 cos

(
arctan

(
σ22

σ21

))
, σ11

]
, for σ21 > 0,[

0, σ11 cos
(

arctan
(

−σ21

σ22

))]
, for σ21 ≤ 0.

(2.2)

Note that the identified set is nonempty for any φ. Hence, models Mp and Ms are ob-
servationally equivalent at any φ ∈ � and neither of them is falsifiable, that is, for any

4See Giacomini and Kitagawa (2021) for a discussion about and motivation for assuming a single prior
for φ. An additional advantage of this assumption in the context of model selection is that it allows one
to isolate the component of the model that depends on the identifying restrictions. This enables one, for
example, to compare models that only differ in the restrictions they impose.
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φ ∈ � in both models there exists a structural parameter A that satisfies the identifying
assumptions.5

We start by specifying a prior for φ in each model. Given the observational equiva-
lence of the two models, it might be reasonable to specify the same prior:

πφ|Mp = πφ|Ms = π̃φ, (2.3)

where π̃φ is a proper prior, such as the one induced by a Wishart prior on �. The same
prior for φ in observationally equivalent models leads to the same posterior:

πφ|Mp,Y = πφ|Ms ,Y = π̃φ|Y . (2.4)

In model Mp, the posterior for φ implies a unique posterior for α, πα|Mp,Y , via the
mapping α = αMp(φ). In model Ms, on the other hand, the posterior for φ does not yield
a unique posterior for α, since the mapping in (2.2) is generally set-valued. Following Gi-
acomini and Kitagawa (2021), we formulate the lack of prior knowledge by considering
multiple priors (ambiguous belief). Formally, given the single prior πφ|Ms , we form the
class of priors for A by admitting arbitrary conditional priors for A given φ, as long as
they are consistent with the identifying assumptions:


A|Ms ≡
{
πA|Ms =

∫
�
πA|Ms ,φ dπφ|Ms : πA|Ms ,φ

(
Asign ∩ g−1(φ)

)= 1, πφ|Ms-a.s.
}

,

where Asign = {A : a12 ≥ 0, a21 ≤ 0, diag(A) ≥ 0} is the set of structural parameters that
satisfy the sign restrictions and the sign normalizations and g−1(φ) is the set of obser-
vationally equivalent structural parameters given the reduced-form parameter φ.

Since the likelihood depends on the structural parameter only through the reduced-
form parameter, applying Bayes’ rule to each prior in the class only updates the prior for
φ, and thus leads to the following class of posteriors for A:


A|Ms ,Y ≡
{
πA|Ms ,Y =

∫
�
πA|Ms ,φ dπφ|Ms ,Y : πA|Ms ,φ

(
Asign ∩ g−1(φ)

)= 1, πφ|Ms-a.s.
}

.

(2.5)
Marginalizing the posteriors in 
A|Ms ,Y to α leads to the class of α-posteriors:


α|Ms ,Y ≡
{
πα|Ms ,Y =

∫
�̃
πα|Ms ,φ dπφ|Ms ,Y : πα|Ms ,φ(ISα(φ)) = 1, πφ|Ms -a.s.

}
. (2.6)

We view this class as a representation of the posterior uncertainty about α in the set-
identified model. The class contains any α-posterior that assigns probability one to
the identified set, and it represents the lack of belief therein in terms of Knightian un-
certainty (ambiguity). This is a key departure from the standard approach to Bayesian

5When σ21 > 0, the point-identified α in model Mp is the upper bound of the identified set in model
Ms , whereas when σ21 < 0, the identified set in model Ms does not contain the point-identified α. This is
because in model Mp we have a12 = − σ21

σ11σ22
, which is positive if σ21 < 0, meaning that the point-identifying

assumptions a12 = 0 and σ21 < 0 are not compatible with the restriction a21 ≤ 0.
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model averaging, which requires a single posterior for all models, including those where
the parameter is set-identified.

Suppose that the researcher’s prior uncertainty over the two models can be repre-
sented by prior probabilities πMp ∈ [0, 1] for model Mp and (1 − πMp ) for model Ms.
Our proposal is to combine the single posterior for α in model Mp and the set of poste-
riors for α in model Ms according to the posterior model probabilities πMp|Y and πMs|Y

(the posterior model probability for model Ms depends only on the single prior for the
reduced-form parameter, so it is unique in spite of the multiple priors for the structural
parameter). The combination delivers a class of posteriors 
α|Y , the post-averaging am-
biguous belief :


α|Y = {πα|Mp,YπMp|Y +πα|Ms ,YπMs|Y : πα|Ms ,Y ∈ 
α|Ms ,Y }. (2.7)

As we show in Section 4.1, our proposal can be interpreted as applying Bayes’ rule to
each prior in a class that has the form of an ε-contaminated class of priors (Berger and
Berliner (1986)).

A key result of the paper is to establish conditions under which the prior model prob-
abilities are updated by the data, which we show occurs when the models are “distin-
guishable” for some reduced-form parameter values and/or they specify different priors
for φ (see Lemma 3.1 below). In the current scenario, the two models are indistinguish-
able, so the prior model probabilities are not updated if they use a common φ-prior.

In practice, we recommend reporting as the output of the procedure the post-
averaging set of posterior means or quantiles of 
α|Y and its associated robust credible
region with credibility γ ∈ (0, 1), defined as the shortest interval that receives posterior
probability at least γ for every posterior in 
α|Y . Proposition 3.1 shows that the set of
posterior means is the weighted average of the posterior mean in model Mp and the set
of posterior means in model Ms:[

inf
πα|Y∈
α|Y

Eα|Y (α), sup
πα|Y∈
α|Y

Eα|Y (α)
]

= πMp|YEα|Mp,Y (α) +πMs|Y
[
Eφ|Ms ,Y

(
l(φ)

)
, Eφ|Ms ,Y

(
u(φ)

)]
, (2.8)

where (l(φ), u(φ)) are the lower and upper bounds of the nonempty identified set for α
shown in (2.2), a+b[c, d] stands for [a+bc, a+bd], and Eφ|Ms ,Y (·) denotes the posterior
mean with respect to πφ|Ms ,Y = π̃φ|Y . Since the set of posterior means can be viewed as
an estimator for the identified set in model Ms, our procedure effectively shrinks the
estimate of the identified set in the set-identified model toward the point estimate in
the point-identified model, with the amount of shrinkage determined by the posterior
model probabilities.

The robust credible region for α with credibility γ can be computed as follows. We
first draw z1, � � � , zG randomly from a Bernoulli distribution with mean πMp|Y and then
generate g = 1, � � � , G random draws of the “mixture identified set” for α according to

ISmix
α (φg ) =

{{
α(φg )

}
, φg ∼ πφ|Mp,Y = π̃φ|Y if zg = 1,[

l(φg ), u(φg )
]
, φg ∼ πφ|Ms ,Y = π̃φ|Y if zg = 0.

(2.9)
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Intuitively, with probability πMp|Y , a draw of the mixture identified set is a singleton
corresponding to the point-identified value of α, and with probability πMs|Y it is a
nonempty identified set for α. The robust credible region with credibility level γ is ap-
proximated by an interval that contains the γ-fraction of the drawn ISmix

α (φ)’s. The min-
imization problem in Step 5 of Algorithm 4.1 in Giacomini and Kitagawa (2021) is solved
to obtain the shortest-width robust credible region.

Our method lends itself to reverse-engineering exercises that help shed light on
the role of identifying assumptions in drawing inferences. For instance, we can com-
pute the prior weight w one would assign to the restriction in Mp such that the set
of posterior means is contained in the positive real half-line. In the current exam-
ple, the prior probabilities are not updated, since the two models are observation-
ally equivalent. We would hence obtain the weights w by solving wEα|Mp,Y (α) + (1 −
w)[Eφ|Ms ,Y (l(φ)), Eφ|Ms ,Y (u(φ))] ≥ 0 as a function of w.

2.2 Nondogmatic identifying assumptions

Our method allows for identifying assumptions that are expressed as a nondogmatic
prior for the structural parameter.

Scenario 2: Candidate models

• Model MB (single prior): A prior for the structural parameter A.

• Model Ms (multiple priors): Same as the set-identified model in Scenario 1.

Model MB assumes availability of a prior for the whole structural parameter. This
prior can reflect Bayesian probabilistic uncertainty about identifying assumptions ex-
pressed as equalities (see, e.g., Baumeister and Hamilton (2015), who propose a prior
for a dynamic version of the current model based on a metaanalysis of the literature).
Another key example of a model that implies a single prior for the structural parameter
is a Bayesian DSGE model.

Model MB always yields a single posterior for α. However, the influence of prior
choice does not vanish asymptotically due to the lack of identification. In principle, if the
researcher were confident about the prior specification in model MB, she could perform
standard Bayesian inference and obtain a credible posterior, despite the identification
issues. In practice, this is rather rare. For instance, the prior considered by Baumeister
and Hamilton (2015) is based on the elicitation of first and second moments and the
remaining characteristics of the distribution are chosen for analytical or computational
convenience. Further, eliciting dependence among structural parameters is challeng-
ing, and an independent prior could lead to unintended or counterintuitive effects on
posterior inference.6 These robustness concerns can be addressed by averaging model
MB with the set-identified model Ms, which accommodates the lack of prior knowledge
about the structural parameter (beyond the inequality restrictions).

One important consideration in this scenario is that the single prior for A in model
MB implies a single prior for φ. Here, we thus allow the prior for φ in model Ms to differ

6“Knowing no dependence” among the parameters differs from “not knowing their dependence.”
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from that in model MB. This, in turn, affects the posterior model probabilities, which
are given by

πMB|Y = p
(
Y |MB

) ·πMB

p
(
Y |MB

) ·πMB +p
(
Y |Ms

) · (1 −πMB )
,

πMs|Y = p
(
Y |Ms

) · (1 −πMB )

p
(
Y |MB

) ·πMB +p
(
Y |Ms

) · (1 −πMB )
,

(2.10)

whereπMB is the prior weight assigned to modelMB,p(Y |M ) ≡ ∫�p(Y |φ, M )dπφ|M (φ),
M = MB, Ms, are the marginal likelihoods of model M with p(Y |φ, M ) the likelihood
of the reduced form parameters. In this scenario, the different priors for φ imply
p(Y |MB ) 	= p(Y |Ms ) and, therefore, the prior model probabilities can be updated by
the data.7

Given these posterior model probabilities, the construction of the post-averaging
ambiguous belief proceeds as in (2.7). The set of posterior means for α can be obtained
similar to (2.8), where MB replaces Mp. The robust credible region can be constructed
as in Scenario 1, by drawing i.i.d. draws z1, � � � , zG ∼ Bernoulli(πMB|Y ) and letting

ISmix
α,g =

{
{α}, α∼ πα|MB ,Y if zg = 1,[
l(φg ), u(φg )

]
, φg ∼ πφ|Ms ,Y if zg = 0.

(2.11)

The reverse-engineering described at the end of Section 2.1 can also be applied in
this scenario, with the difference that the weights w and 1 − w are now substituted by

the updated posterior model probabilities, πMB|Y = p(Y |MB )·w
p(Y |MB )·w+p(Y |Ms )·(1−w)

and πMs|Y =
p(Y |Ms )·(1−w)

p(Y |MB )·w+p(Y |Ms )·(1−w)
.

3. Formal analysis

3.1 Notation and definitions

Consider J + K ≥ 2 models, J, K ≥ 0, where J models are single-prior models collected
in the class Mp and K models are multiple-prior models collected in the class Ms .

Let M ≡ Mp ∪ Ms. The structural parameters in model M ∈ M is θM ∈ 
M , where

M embeds the identifying assumptions imposed in model M . We assume that the
scalar parameter of interest α = αM (θM ) ∈ R is well-defined as a function of θM and
it carries a common (causal) interpretation in all models. The reduced-form parame-
ter is φM = gM (θM ) ∈ R

dM , where gM (·) maps a set of observationally equivalent struc-
tural parameters subject to the identifying assumptions in model M to a point in the

7Section 3 shows that, if we add identifying restrictions so that Ms becomes falsifiable, the

posterior model probabilities become πMB|Y = p(Y |MB )·πMB

p(Y |MB )·πMB+p(Y |Ms )·OMs ·(1−π
MB )

and πMs|Y =
p(Y |Ms )·OMs ·(1−π

MB )
p(Y |MB )·πMB+p(Y |Ms )·OMs ·(1−π

MB )
, where OMs is the posterior-prior plausibility ratio.



Quantitative Economics 13 (2022) Uncertain identification 105

reduced-form parameter space �M = gM (
M ).8 Our most general set-up allows the pa-
rameter space of structural and reduced-form parameters to differ across models. We
express the likelihood in model M ∈ M in terms of the reduced-form parameter by
p(Y |φM , M ).9 For M ∈ Ms, we define the identified set of α by ISα(φM |M ) = {αM (θM ) :
θM ∈
M ∩ g−1

M (φM )}, which is a set-valued mapping from �M to R.
We next introduce the concept of identical reduced-forms.

Definition 3.1. A class of models M admits an identical reduced-form if:

(a) �M can be embedded into a common d-dimensional Euclidean space R
d for all

M ∈ M (hence φM can be denoted by φ ∈R
d).

(b) For every M ∈ M, p(Y |φM = φ, M ) defines a probability distribution of Y on the
extended domain φ ∈ � ≡⋃M∈M�M , and p(Y |φM = φ, M ) = p(Y |φ) holds for
all φ ∈�, where p(Y |φ) is the likelihood common among M ∈M.

Definition 3.1 formalizes the situation where models imposing different identifying
assumptions lead to the same family of distributions for the observables (different iden-
tifying assumptions, nonetheless, can lead to different �M ). For instance, if M consists
of SVAR models with the same set of variables but different identifying assumptions,
Definition 3.1 is satisfied when the reduced-form VARs implied by the models feature
the same variables and lag length.

We next introduce the concepts of observational equivalence and distinguishability.

Definition 3.2. (i) The models in M are observationally equivalent at φ if M admits
an identical reduced-form and φ ∈⋂M∈M�M .

(ii) M , M ′ ∈ M that admit an identical reduced-form are distinguishable if �M 	=
�M ′ .

(iii) The models in M are indistinguishable if M admits an identical reduced-form
and �M =� for all M ∈M.

Note that our definition of observational equivalence is local to φ, and it does not
constrain the relationship among the reduced-form parameter spaces for different mod-
els (except that they must have a nonempty intersection). On the other hand, indistin-
guishability can be interpreted as observational equivalence of the models in a global
sense—if the models are indistinguishable, one could not find support for one model
rather than the others based on the data, regardless of any available knowledge about
the distribution of observables.

8�M incorporates any testable implications of the imposed identifying assumptions. For a set-identified
model, �Ms is equivalent to the set of φM ’s that yield a nonempty identified set, �Ms = {φMs ∈ R

dMs :
ISα(φMs |Ms ) 	= ∅}.

9The likelihood p̃(Y |θM , M ) depends on θM only through the reduced-form parameters gM (θM ) for any
realization of Y , that is, there exists p(Y |·, M ) such that p̃(Y |θM , M ) = p(Y |gM (θM ), M ) holds for every Y

and φM = gM (θM ) is identifiable.
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3.2 Prior and posterior model probabilities

This section shows when and how the data update the prior model probabilities.
Let (πM : M ∈ M),

∑
M∈MπM = 1, be prior probabilities assigned over M. By Bayes’

rule, the posterior probability for each model is

πM|Y = p(Y |M )πM∑
M ′∈M

p
(
Y |M ′)πM ′

. (3.1)

Since the marginal likelihood depends only on the φM-prior, which we assume to be a
single prior for all M ∈ M, the posterior model probabilities are unique for all models.10

The next lemma obtaines posterior model probabilities when the models admit an
identical reduced form.

Lemma 3.1. (i) Suppose that Ms ∈ Ms admit an identical reduced form with φ ∈ � =⋃
Ms∈Ms �Ms ⊂ R

d . Let π̃φ be a proper prior on � and assume that π̃φ(�Ms ) =
π̃φ(ISα(φ|Ms ) 	= ∅) > 0 for all Ms ∈ Ms . Let π̃φ|Y be the posterior obtained by up-
dating π̃φ with the common likelihood p(Y |φ). Suppose that the φ-prior is ob-
tained by trimming the support of π̃φ to �Ms :

πφ|Ms (B) = π̃φ(B ∩�Ms )
π̃φ(�Ms )

, B ∈ B(�), (3.2)

where B(�) is the Borel σ-algebra of �. Then the posterior model probabilities are
given by⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

πMp|Y = p
(
Y |Mp

)
πMp∑

Mp′∈Mp

p
(
Y |Mp′)πMp′ + p̃(Y )

∑
Ms′∈Ms

OMs′πMs′
, for Mp ∈ Mp,

πMs|Y = p̃(Y )OMsπMs∑
Mp′∈Mp

p
(
Y |Mp′)πMp′ + p̃(Y )

∑
Ms′∈Ms

OMs′πMs′
, for Ms ∈ Ms ,

(3.3)
where OMs is the posterior-prior plausibility ratio of the set-identifying assump-
tions of model Ms ∈ Ms and p̃(Y ) is the marginal likelihood with respect to π̃φ,

OMs ≡ π̃φ|Y (�Ms )

π̃φ(�Ms )
= π̃φ|Y

(
ISα
(
φ|Ms

) 	= ∅)
π̃φ

(
ISα
(
φ|Ms

) 	= ∅) ,

p̃(Y ) =
∫
�
p(Y |φ)dπ̃φ(φ).

(3.4)

(ii) Suppose that, in addition to Ms , all the models in Mp admit an identical reduced
form. Let π̃φ be as in (i) of the current lemma and assume π̃φ(�M ) > 0 for all

10Note that our method introduces ambiguous beliefs for the nonidentifiable parameters, while it as-
sumes availability of prior model probabilities even when the models are indistinguishable. Hence, we are
not treating nonidentifiability of the parameters and of the models in a symmetric way.
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M ∈ M. If the φ-prior satisfies (3.2) in every M ∈ M, then the posterior model
probabilities further simplify to

πM|Y = OMπM∑
M ′∈M

OM ′πM ′
for M ∈ M, (3.5)

where OM = π̃φ|Y (�M )
π̃φ(�M ) .

(iii) If all models are indistinguishable and the φ-prior is common, then the model
probabilities are never updated, πM|Y = πM for all M ∈ M and for any realization
of Y .

Lemma 3.1 clarifies the sources of updating of the prior model probabilities. In
claim (i), the specification of the φ-prior as in (3.2) simplifies the marginal likelihood
of Ms ∈ Ms to p̃(Y )OMs . If all the models admit an identical reduced-form (claim (ii)),
the posterior model probabilities only depend on {OM : M ∈ M}. Claim (iii) shows the
intuitive result that model probabilities are not updated if all the models are indistin-
guishable and share a unique φ-prior.

3.3 Post-averaging ambiguous belief and the set of posteriors

Estimation of the single-prior models proceeds in the standard Bayesian way. We there-
fore take the posterior πα|Mp,Y as given.

We perform posterior inference for model Ms ∈ Ms in the robust Bayesian way: we
specify a single proper prior πφMs |Ms that is supported on �Ms , and form the set of priors
for θMs as


θMs |Ms ≡ {πθMs |Ms : πθMs |Ms

(

Ms ∩ g−1

Ms (B)
)= πφMs |Ms (B), ∀B ∈ B(�Ms )

}
, (3.6)

where B(�Ms ) is the Borel σ-algebra of �Ms .11 Applying Bayes’ rule to each θM-prior in

θMs |Ms with the likelihood, p̃(Y |θMs , Ms ),12 and marginalizing the resulting posterior
of θM via α = αM (θM ), we obtain the following set of posteriors for α:13


α|Ms ,Y ≡
{
πα|Ms ,Y =

∫
�M

πα|Ms ,φMs dπφMs |Ms ,Y : πα|Ms ,φMs

(
ISα
(
φMs |Ms

))= 1,

πφMs |Ms-a.s.
}

. (3.7)

11By noting that the constraints in (3.6) are rewritten as
∫
B πθMs |φMs ,Ms (
Ms ∩ g−1

Ms (φ))dπφMs |Ms (φMs ) =
πφMs |Ms (B) for all B ∈ B(�Ms ), the prior class (3.6) can be equivalently represented as


θMs |Ms =
{∫

�Ms

πθMs |φMs ,Ms dπ�Ms |Ms : πθMs |φMs ,Ms

(

Ms ∩ g−1

Ms (φMs )
)= 1, πφMs |Ms ,Y -a.s.

}
.

This alternative expression is exploited in the illustrative example of Section 2.
12The likelihood of θM is linked to the likelihood of φM via p̃(Y |θMs , Ms ) = p(Y |g(θMs ), Ms ) by the def-

inition of reduced-form parameters.
13Lemma A.1 in the Appendix of the Online Supplementary Material shows a formal derivation of


α|Ms ,Y .
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Given the posterior model probabilities, a posterior for α with the models averaged
out is

πα|Y =
∑

Mp∈Mp

πα|Mp,YπMp|Y +
∑

Ms∈Ms

πα|Ms ,YπMs|Y ,

where the α-posterior for Mp ∈ Mp is unique, while there are multiple α-posteriors for
Ms ∈ Ms as shown in (3.7). The set of averaged posteriors can be represented as


α|Y =
{ ∑
Mp∈Mp

πα|Mp,YπMp|Y +
∑

Ms∈Ms

πα|Ms ,YπMs|Y : πα|Ms ,Y ∈
α|Ms ,Y ∀Ms ∈ Ms

}
.

(3.8)
The next proposition provides a formal robust Bayes’ justification for our averaging

formula (3.8) when the structural parameters are common across all models.14

Proposition 3.1. Suppose that structural parameters are common in all models, θM =
θ ∈ R

dθ for all M ∈ M, and define 
 =⋃M∈M
M ⊂ R
dθ . Consider prior model probabil-

ities (πM : M ∈ M), a prior πθ|Mp for θ in Mp ∈ Mp, and a prior for the reduced-form
parameters in Ms ∈ Ms . Define a set of priors for (θ, M ) ∈
×M:


θ,M ≡ {πθ,M = πθ|MπM : πθ|Ms ∈
θ|Ms for every Ms ∈ Ms
}

, (3.9)

where 
θ|Ms is defined in (3.6). Then Bayes’ rule applied to each prior in 
θ,M with likeli-
hood p̃(Y |θ, M ) and marginalization to α yields (3.8) as the class of posteriors for α.

The next proposition derives the set of posterior means and the posterior probabili-
ties when the posterior for α varies within 
α|Y .

Proposition 3.2. Let [l(φMs |Ms ), u(φMs |Ms )] be the convex hull of the identified set
ISα(φMs |Ms ) in model Ms ∈ Ms .

(i) The set of posterior means of 
α|Y is the convex interval with lower and upper
bounds:

inf
πα|Y∈
α|Y

Eα|Y (α) =
∑

Mp∈Mp

Eα|Mp,Y (α)πMp|Y

+
∑

Ms∈Ms

EφMs |Y ,Ms

[
l
(
φMs |Ms

)]
πMs|Y ,

sup
πα|Y∈
α|Y

Eα|Y (α) =
∑

Mp∈Mp

Eα|Mp,Y (α)πMp|Y

+
∑

Ms∈Ms

EφMs |Y ,Ms

[
u
(
φMs |Ms

)]
πMs|Y ,

where EφMs |Y ,Ms (·) is the expectation with respect to the posterior of φMs .

14The reason we assume a common structural parameter space is to ensure that we can construct a prior
distribution on the product space of the structural parameter space and the model space.
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(ii) For any measurable subset H in R, the lower and upper bounds of the posterior
probabilities on {α ∈ H} in the class 
α|Y (the lower and upper posterior probabili-
ties of 
α|Y ) are

inf
πα|Y∈
α|Y

πα|Y (H ) =
∑

Mp∈Mp

πα|Mp,Y (H )πMp|Y

+
∑

Ms∈Ms

πφMs |Y ,Ms

(
ISα
(
φMs |Ms

)⊂H
) ·πMs|Y ,

sup
πα|Y∈
α|Y

πα|Y (H ) =
∑

Mp∈Mp

πα|Mp,Y (H )πMp|Y

+
∑

Ms∈Ms

πφMs |Y ,Ms

(
ISα
(
φMs |Ms

)∩H 	= ∅) ·πMs|Y .

If ISα(φMs |Ms ) is a connected interval at every reduced-form parameter value, then
we can view [EφMs |Y ,Ms[l(φMs |Ms )], EφMs |Y ,Ms[u(φMs |Ms )]] as an estimator of the iden-
tified set in model Ms. We can thus interpret the set of post-averaging posterior means
as the weighted Minkowski sum of the Bayesian point estimators in the point-identified
models and the identified set estimators in the set-identified models. The second claim
of the proposition provides an analytical expression for the lower probability of 
α|Y as a
mixture of the containment functionals of the random sets, which in turn can be viewed
as the containment functional of the mixture random sets Pr(ISmix

α ⊂ A), where ISmix
α is

generated according to

M ∼ Multinomial
(
{πM|Y }M∈M

)
,

ISmix
α =

{
{α}, α|(Mp, Y ) ∼ πα|Mp,Y , for Mp ∈ Mp,

ISα
(
φMs |Ms

)
, φMs |(Ms , Y ) ∼ πφMs |Ms ,Y , for Ms ∈ Ms .

(3.10)

This way of interpreting the lower probability of 
α|Y simplifies its computation and
justifies the algorithm presented in (2.9).

3.4 Computation

To report the set of posteriors based on the analytical expressions in Proposition 3.2,
we need to compute (i) the posterior model probabilities (equivalently, the marginal
likelihood in each M ∈ M), (ii) the posterior for α for each single-prior model, and (iii)
the identified set ISα(φMs |Ms ) and the posterior for φMs for each multiple-prior model.
Estimation of the single-prior models in (ii) is standard, and we assume some suitable
posterior sampling algorithm is applicable to obtain Monte Carlo draws of α ∼ πα|Mp,Y .
For (i), efficient and reliable algorithms to compute the marginal likelihood are available
in the literature; for example, see Chib and Jeliazkov (2001), Geweke (1999), and Sims,
Waggoner, and Zha (2008). When all the models admit an identical reduced-form, com-
puting the marginal likelihoods is not necessary since the posterior model probabilities
depend only on the posterior-prior plausibility ratios OM .
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In each multiple-prior model, the posterior-prior plausibility ratio OMs can be com-
puted by plugging in numerical approximations for the prior and posterior probabil-
ities of the non-emptiness of the identified set into (3.4). The denominator of OMs is
computed by drawing many φ’s from the prior π̃φ and computing the fraction of draws
that yield nonempty identified sets. The numerator of OMs is computed similarly except
that the φ’s are drawn from the posterior π̃φ|Y . Whether checking the nonemptiness
of ISα(φ|Ms ) is simple or not depends on the application. In the application in Sec-
tion 4 to SVARs with sign restrictions, we consider two ways to check the nonemptiness
of ISα(φ|Ms ). The first (Algorithm A.1 in the Appendix of the Online Supplementary Ma-
terial) builds on Algorithm 1 of Giacomini and Kitagawa (2021) and assesses nonempti-
ness based on the Monte Carlo draws of the impulse responses. The second approach
(Algorithm A.2 in the Appendix of the Online Supplementary Material), which is novel in
the literature and can be of independent interest, exploits the analytical features of the
identifying restrictions in sign restricted SVARs. See the Appendix for the details of these
algorithms.

Monte Carlo draws of the lower and upper bounds of the identified set in model
M ∈ Ms can be obtained by first drawing φ’s from the posterior π̃φ|Y , then retain-
ing the draws of φ that yield a nonempty ISα(φ|Ms ), and computing the correspond-
ing l(φ|Ms ) and u(φ|Ms ). Their sample averages approximate Eφ|Ms ,Y (l(φ|Ms )) and
Eφ|Ms ,Y (u(φ|Ms )). Implementation of this procedure requires computability of the
lower and upper bounds of the identified set for each φ. In the SVAR application of Sec-
tion 4, we compute l(φ|Ms ) and u(φ|Ms ) by numerical optimization.

Utilizing the mixture random set representation shown in (3.10), we can use the fol-
lowing algorithm to approximate the lower posterior probability.

Algorithm 3.1.

Step 1: Draw a model M ∈ M from a multinomial distribution with parameters
(πM|Y : M ∈ M).

Step 2: If the drawn M belongs to Mp, then draw α ∼ πα|M ,Y and set ISmix
α = {α} (a

singleton). If the drawn M belongs to Ms, draw φM ∼ πφ|M ,Y and set ISmix
α =

ISα(φM |M ).15

Step 3: Repeat Steps 1 and 2 many (G) times and obtain G draws of ISmix
α : ISmix

α,1 , � � � ,

ISmix
α,G.

Step 4: Let [lmix
g , umix

g ] be the lower and upper bounds of ISmix
α,g , g = 1, � � � , G, where

lmix
g = umix

g if ISmix
α,g is a singleton (i.e., gth draw of M belongs to Mp). Approxi-

mate the mean bounds of the post-average posterior class by

inf
πα|Y∈
α|Y

Eα|Y (α) = 1
G

G∑
g=1

lmix
g , sup

πα|Y∈
α|Y

Eα|Y (α) = 1
G

G∑
g=1

umix
g . (3.11)

15Note that since πφ|M ,Y is supported only on the set of φ’s yielding a nonempty identified set, ISα(φ|M )
computed subsequently is nonempty.
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Approximate the lower probability of the post-averaging posterior class at H ⊂
R by

inf
πα|Y∈
α|Y

πα|Y (H ) ≈ 1
G

G∑
g=1

1
{
ISmix

α,g ⊂H
}

. (3.12)

The draws of ISmix
α obtained in Steps 1–3 in Algorithm 3.1 are also useful for con-

structing robust credible regions, which are intervals that attain a certain level of credi-
bility uniformly over the posterior class. Applying Proposition 1 of Giacomini and Kita-
gawa (2021) to the Monte Carlo draws of ISmix

α , we can easily approximate the shortest
robust credible region for α.

3.5 Asymptotic properties

This section analyzes the asymptotic properties of our method. The method is finite-
sample exact (up to Monte Carlo approximation errors), but the asymptotic analysis can
be valuable to understand what aspects of the prior input, if any, remain influential in
large samples. In this section, we make the sample size explicit by denoting a size n sam-
ple by Yn.

We assume that at least one model is correctly specified, so that the data-generating
process is given by p(Yn|φtrue ), where φtrue ∈ � is the true reduced-form parame-
ter value. We denote the unconstrained maximum likelihood estimator for φ by φ̂ ≡
arg maxφ∈�p(Yn|φ) and the true probability law of the sampling sequence {Yn : n =
1, 2, � � � } by PY∞|φtrue .

We impose the following regularity assumptions.

Assumption 3.2. (i) M admits an identical reduced-form (Definition 3.1) and every
M ∈ M satisfies either one of the following conditions:

(A) �M contains φtrue in its interior.

(B) �c
M contains φtrue in its interior.

MA, denoting the set of models satisfying condition (A), is nonempty.

(ii) Let ln(φ) ≡ n−1 logp(Yn|φ). There exist an open neighborhood B of φtrue and n0 ≥
1, such that for any {Yn : n = n0, n0 + 1, � � � }, ln(·) is third-time differentiable with
the third-order derivatives bounded uniformly on B.

(iii) Let Hn(φ̂) ≡ − ∂2ln(φ̂)
∂φ′∂φ . Hn(φ̂) is a positive definite matrix and

lim inf
n→∞ det

(
Hn(φ̂)

)
> 0,

with PY∞|φtrue -probability one.
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(iv) For any open neighborhood B of φtrue,

lim sup
n→∞

sup
φ∈�\B

{
ln(φ) − ln(φtrue )

}
< 0

holds with PY∞|φtrue -probability one.

(v) For every M ∈ M, πφ|M has probability density fφ|M (φ) ≡ dπφ|M
dφ (φ) with respect

to the Lebesgue measure on �M and fφ|M (φ) is continuously differentiable with a
uniformly bounded derivative. For every M ∈ MA, fφ|M (φtrue ) > 0.

Assumption 3.2(i) implies that none of the models has φtrue on the boundary of its
reduced-form parameter space. Assumptions 3.2(iii) and (iv) impose regularity condi-
tions that imply almost sure consistency of φ̂. Assumptions 3.2(ii) and (v) allow an appli-
cation of the Laplace method to approximate the large sample marginal likelihood. As-
sumptions similar to Assumptions 3.2(ii)–(v) appear in Kass, Tierney, and Kadane (1990)
in their validation of the higher-order expansion of the marginal likelihood.

The next proposition derives the limits of the posterior model probabilities.

Proposition 3.3. (i) Suppose Assumption 3.2 holds. Then

πM|Y∞ ≡ lim
n→∞πM|Yn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

fφ|M (φtrue ) ·πM∑
M ′∈MA

fφ|M ′(φtrue ) ·πM ′
, for M ∈ MA,

0, for M /∈ MA.

(3.13)

with PY∞|φtrue -probability one.

(ii) Suppose that Assumption 3.2 holds and a prior for φ given M is constructed ac-
cording to (3.2) with a proper prior π̃φ. If π̃φ(�M ) > 0 for all M ∈ M,

πM|Y∞ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π̃φ(�M )−1 ·πM∑
M ′∈MA

π̃φ(�M ′ )−1 ·πM ′
, for M ∈ MA,

0, for M /∈MA.

(3.14)

with PY∞|φtrue -probability one.

(iii) Under the assumptions of Lemma 3.1(iii), πM|Y∞ = πM holds for every M ∈ M for
any sampling sequence {Yn : n = 1, 2, � � � }.

The proposition clarifies the large sample behavior of the posterior model probabil-
ities when the models admit an identical reduced-form. First, it shows that our proce-
dure asymptotically screens out models whose identifying assumptions are misspec-
ified, M /∈ MA, as their posterior probabilities converge to zero. If there is only one
model consistent with the data-generating process, asymptotically it has probability
one. Second, if MA contains multiple models, their asymptotic probabilities depend
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on the prior model probabilities and on the φ-priors evaluated at φtrue. This implies
that the post-averaging posterior is asymptotically sensitive to the choices of φ-priors
and prior model probabilities when multiple models are observationally equivalent at
φtrue. Third, when the φ-priors are common, the asymptotic model probabilities are
proportional to the reciprocal of the prior probability that the data is consistent with the
identifying assumptions. Hence, the asymptotic posterior model probabilities are higher
for more observationally restrictive models, that is, if �M1 ⊂ �M2 for M1, M2 ∈ MA, we
have πM1|Y∞ ≥ πM2|Y∞ . This result is in line with the principle of parsimony (Ockham’s
razor)— we should prefer a more parsimonious model among those that explain the
data equally well.16

3.6 Discussion

We discuss how our method relates to the literature on ε-contaminated class of priors
and to a hierarchical Bayesian way to bridge the gap between structural and reduced-
form models.

Our method can be directly linked to performing robust Bayes’ analysis using an ε-
contaminated class of priors (Huber (1973), Berger and Berliner (1986)). Consider the
case of one single-posterior model and one multiple-posterior model, M = {Mp, Ms}
that share the same parameterization of the structural model and where the likelihood
for the common structural parameters θ does not depend on the model.

Given (πMp , πMs ), πθ|Mp , and 
θ|Ms as in (3.6), consider the set of priors for θ con-
structed by marginalizing 
θ,M of Proposition 3.1 to θ,


θ ≡ {πθ = πθ|MpπMp +πθ|MsπMs : πθ|Ms ∈
θ|Ms }. (3.15)

A general formulation of an ε-contaminated class of priors is given by


ε
θ ≡ {πθ = (1 − ε)π0

θ + εqθ : qθ ∈ Q
}

, (3.16)

where 0 ≤ ε ≤ 1 is a prespecified constant, π0
θ is a benchmark prior for θ, and Q is a set

of priors of θ. Following Berger and Berliner (1986), ε is interpreted as the amount of
contamination, qθ captures how π0

θ differs from the most credible prior and Q is the set
of possible departures. The prior input of our procedure in (3.15) has the same form as
the ε-contaminated class of priors (3.16)—
θ is an ε-contaminated class of priors where
the benchmark prior is from the single-prior (point-identified) model π0

θ = πθ|Mp , the
amount of contamination is the prior model probability assigned to the set-identified
model ε = πMs and Q corresponds to the multiple priors for the set-identified model

θ|Ms . This clarifies a robust Bayes interpretation of our method: If the point-identified
model is a possibly misspecified benchmark, averaging it with the set-identified model
with weight πMs can be interpreted as performing sensitivity analysis by contaminating

16For instance, in a SVAR, a model point-identified by equality restrictions is not observationally restric-
tive, while a model set-identified by sign restrictions can be observationally restrictive. If the φ-priors satisfy
(3.2) and the models are observationally equivalent at φtrue, then, relative to the prior model weights, the
sign-restricted model receives a larger weight than the point-identified model in large samples.
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the prior of the point-identified model by an amount πMs in every possible direction
subject to the set-identifying assumptions.

Our method could be viewed as a way to bridge the gap between structural and
reduced-form models, for example, as an alternative to the hierarchical Bayesian ap-
proach of, for example, (Del Negro and Schorfheide (2004)), in which the structural
parameters in a DSGE model act as hyperparameters of a prior for SVAR parameters.
The two approaches differ in several ways. First, the hierarchical Bayesian approach al-
ways leads to a single posterior for the parameter, even if it is not identified in the SVAR
model. If the parameter is not identified, this means that the priors have some part that
is unrevisable by the data, leading to posterior sensitivity. In contrast, our procedure
would classify the DSGE model as a single-prior model and the set-identified SVAR as
a multiple-prior model, thus removing sensitivity to the choice of prior. Second, in the
hierarchical Bayesian approach the prior confidence assigned to the structural model is
the tightness of the prior predicted by the DSGE model, while in our procedure it is the
model probability. It is however important to distinguish the notions of confidence in
the two approaches, since the former is in terms of Bayesian probabilistic uncertainty
while the latter is in terms of Knightian uncertainty.

4. Empirical application

We illustrate our method in the context of a conventional monetary SVAR for the federal
funds rate it , real output growth �gdpt and inflation πt , as in Aruoba and Schorfheide
(2011). The model has three lags (as selected by the HQ information criterion). Follow-
ing Definition 3 in Giacomini and Kitagawa (2021), we order the variables so that we can
verify the conditions guaranteeing convexity of the identified set using their Proposi-
tion B.1:

A0yt = c +
3∑

j=1

Ajyt−j + εt , for t = 1, � � � , T , (4.1)

where yt = (it , �gdpt , πt )′ and

A0 =
⎛
⎜⎝a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎟⎠ . (4.2)

Assume εt = (εmp
t , εdt , εst )′ are i.i.d. normally distributed with mean zero and variance-

covariance the identity matrix I3. The first equation in (4.1) is interpreted as a monetary
policy function, while the second and third represent aggregate demand (AD) and ag-
gregate supply (AS), respectively. Thus, εmp

t , εdt , and εst are monetary policy-, aggregate
demand-, and aggregate supply shocks, respectively. The data are quarterly observations
from 1965:1 to 2005:1 from the FRED2 database.

The reduced-form VAR is

yt = b+
3∑

j=1

Bjyt−j + ut , (4.3)
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where b = A−1
0 c, Bj = A−1

0 Aj , ut = A−1
0 εt , var(ut ) = E(utu′

t ) = � = A−1
0 (A−1

0 )′. The re-
duced form parameter is φ = (b, B1, � � � , B4, �).

The prior belongs to the normal inverse-Wishart family:

�∼ IW(�, d), β|� ∼ N (b̄, �⊗�),

where β≡ vec([b, B1, � � � , B4]′ ). � = I3 is the location matrix of �, d = 4 is a scalar degrees
of freedom hyperparameter and � = 100I10 is the variance-covariance matrix of β. The
prior mean b̄ is consistent with a random walk representation for the observables. In
what follows, we perform Algorithm 3.1 with 1000 draws of φ’s from the normal inverse-
Wishart posterior. Following Christiano, Eichenbaum, and Evans (1999), we always im-
pose the sign normalization restrictions so that the diagonal elements of A0 are non-
negative.

4.1 Averaging indistinguishable models

Suppose we are interested in the cumulative output growth response17 to a unit (con-
tractionary) monetary policy shock ε

mp
t at horizon h, IRh

�gdp,mp, and consider the fol-
lowing two sets of identifying assumptions.

• Model 1 (M1, point-identified)
Assume that output growth and inflation do not react on impact to the monetary
policy shock, so that the (2,1) and (3,1) elements of the matrix of contemporaneous
impulse responses IR0 = A−1

0 are zero. This identification scheme point identifies
IRh

�gdp,mp.

• Model 2 (M2, set-identified through zero restrictions)
The identification scheme in Model 1 is controversial.18 Thus, in Model 2 we leave
inflation unrestricted and the zero restriction is only imposed on the (2,1) element
of A−1

0 . By Proposition B.1 in Giacomini and Kitagawa (2021), Model 2 delivers a
convex identified set for IRh

�gdp,mp.

Panels (a), (b), and (e) of Figure 1 focus on the output response at horizon h = 3
implied by Model 1, Model 2, and their average for uniform prior model probabilities. In
panel (a), the vertical solid lines for Model 1 are the 90% credible region for the point-
identified output response based on a single posterior; in panel (b), the vertical dashed
lines for Model 2 are the posterior mean bounds (consistent estimator of the identified
set) for the output response and the solid line represents credible regions piled up from
the 95% (bottom) to 5% (top) with increasing credibility by 5%. Panel (e) reports the
model averaging results. The vertical dashed lines for the averaged model can be viewed
as shrinking the identified set estimator from Model 2 toward the point estimator from
Model 1. Figure 2 reports the results for multiple horizons.

17From now on, any impulse response is cumulative.
18See Kilian (2013) for a discussion.
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Figure 1. Density and robust credible region of output impulse responses. Note: Figure 1 re-
ports output impulse response at horizon h = 3. For set-identified models (panel (b), (c) (e), (f),
(g), (h)), step lines represent the Robust Credible Region (RCR) at different credibility levels. The
vertical dashed lines represent the posterior mean bounds. For point-identified models (panel
(a) and (d)), the vertical solid lines display the standard credible region. In such a case, we report
its posterior density.

Note that, as is common for point-identified small-scale SVARs, Model 1 shows a
negative response of output in the short run, whereas the set-identified Model 2 is con-
sistent with both positive and negative effects. This is confirmed by the last row in Ta-

Figure 2. Plots of output impulse responses. Note: For set-identified models (panel (b), (c) (e),
(f), (g), (h)), the vertical bars show the posterior mean bounds and the dashed curves connect
the upper/lower bounds of posterior robust credible regions with credibility 90%. For point-i-
dentified models (panel (a) and (d)), the points plot the (unique) posterior mean and the dashed
curve represent the highest posterior density regions with credibility 90%.
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ble 2, reporting the lower and upper probability that the post-averaging interval of pos-
terior means of the output response lies in the negative real half-line. Averaging the
models still does not rule out a positive output response, as the 90% robust credibility re-
gion always contains positive values. Note that, since the models are indistinguishable,
the prior model probabilities are not updated by the data.

4.2 Averaging distinguishable models

We now consider a case where the prior model probabilities are updated, by adding two
popular models: a sign-restricted SVAR and a structural DSGE model:

• Model 3 (M3, set-identified through sign restrictions)
We consider the following sign restrictions: the inflation response to a contrac-
tionary monetary policy shock is nonpositive and the interest rate response is non-
negative at h = 0, 1. As in Uhlig (2005), the output response is unrestricted. By
Lemma 5.2 in Giacomini and Kitagawa (2021), the identified set in Model 3 is con-
vex.

Consider averaging Model 1 and Model 3 with equal prior probabilities. In contrast
to the previous example, the prior probabilities can now be updated using equation (3.5)
because the models are distinguishable due to the observationally restrictive sign re-
strictions. The Appendix in the Online Supplementary Material provides two algorithms
for approximating the posterior-prior plausibility ratio for the sign-restricted SVARs. We
report results based on Algorithm A.1 (Algorithm A.2 produces almost identical results).

Panel (f) of Figures 1 and 2 reports the results of averaging the two models: as in the
case of Model 2, Model 3 does not rule out a positive output response (this is also the
conclusion of Uhlig (2005), however based on a single-prior approach). Table 1 shows
that the posterior model probabilities favor Model 3 (with posterior probability 0.55),
and the average of the two models does not exclude a positive output response.

• Model 4 (M4, DSGE)
We consider the Bayesian DSGE model in An and Schorfheide (2007), which is a
simplified version of Smets and Wouters (2003) and Christiano, Eichenbaum, and
Evans (2005). In order to estimate the model, we rely on the prior specification in An
and Schorfheide (2007), Table 2 and use output, inflation, and interest rate as ob-
servables. We use the Laplace approximation to compute the marginal likelihood.

Panel (g) of Figures 1 and 2 shows the results of averaging Models 3 and 4; note the
different scale for Model 4. These models do not admit an identical reduced form, so the
(equal) prior probabilities are updated according to equation (3.3). We see that Model 4
implies a negative output response; however, its posterior model probability is only 0.13,
and the averaged model is consistent with both a positive and negative output response.

Finally, Panel (h) of Figures 1 and 2 reports the results of averaging all models (with
equal prior weights). The posterior model probabilities (Table 1, last column) show ev-
idence supporting the sign-restricted SVAR, while the support for the DSGE model is
again weak. As in all previous cases, the averaged model does not rule out a positive
output response.
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Table 1. Output responses: prior and posterior weights.

Averaging M1, M2 Averaging M1, M3 Averaging M3, M4 Averaging M1, M2, M3, M4

Prior w1 0.50 0.50 / 0.25
Prior w2 0.50 / / 0.25
Prior w3 / 0.50 0.50 0.25
Prior w4 / / 0.50 0.25
O1 1 1 / 1
O2 1 / / 1
O3 / 1.21 1.21 1.21
O4 / / 1 1
ln p̃(Y ) −779.61 −779.61 −779.61 −779.61
lnp(Y |M1 ) −779.61 −779.61 −779.61 −779.61
lnp(Y |M4 ) / / −781.29 −781.29
Posterior w∗

1 0.50 0.45 / 0.29
Posterior w∗

2 0.50 / / 0.29
Posterior w∗

3 / 0.55 0.87 0.36
Posterior w∗

4 / / 0.13 0.06

Note: Prior wi , Oi , and posterior w∗
i denote prior model probability, posterior-prior credibility ratio, and posterior model

probability for candidate Model i, respectively; ln p̃(Y ), lnp(Y |M1 ), and lnp(Y |M4 ) represent log marginal likelihood for the
common reduced form, for Model 1 and for Model 4, respectively.

4.3 Reverse-engineering prior model probabilities

We now conduct the reverse engineering exercise discussed in Section 2, which com-
putes the prior weight one would need to assign to a set of restrictions in order for the
posterior mean bounds for the output response to be contained in the negative real
halfline.

First, consider Model 1 and Model 2. Letting w be the prior probability of Model 1,
the post-averaging interval of posterior means is[

inf
πα|Y∈
α|Y

Eα|Y (α), sup
πα|Y∈
α|Y

Eα|Y (α)
]

= πM1|YEα|M1,Y (α) +πM2|Y
[
Eφ|Y ,M2

(
l
(
φM2|M2)), Eφ|Y ,M2

(
u
(
φM2|M2))]

and the posterior model probabilities are equal to the prior probabilities (since the mod-
els are indistinguishable), that is, πM1|Y =w and πM2|Y = 1 −w.

We compute the prior model probability w such that the post-averaging interval of
posterior means is contained in the negative real half-line for h = 3. We find that one
would need w> 0.28 to support the conclusion.

We next consider Model 1 and Model 3 (set-identification through sign restrictions).
The only difference is that now the posterior model probabilities are updated and are
equal to

πM1|Y = O1 ·w
O1 ·w +O3 · (1 −w)

and πM3|Y = O3 · (1 −w)
O1 ·w +O3 · (1 −w)

.

We find that one would need to attach very high prior probability (w > 0.83) to the
point-identifying restrictions in Model 1 to obtain a negative output response.
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Table 2. Output responses: estimation and inference.

M1 M2

h= 2 h = 10 h = 20 h= 2 h= 10 h = 20

Post. Mean −0.16 −0.68 −1.22 / / /

90% CR [−0.35, 0.02] [−1.28, −0.06] [−2.37, −0.13] / / /

Post. Mean Bounds / / / [−0.20, 0.07] [−0.83, 0.27] [−1.58, 0.62]
90% robust CR / / / [−0.37, 0.28] [−1.43, 0.97] [−2.62, 2.00]
Set of 
IRh|Y {IRh < 0} 0.92 0.97 0.97 [0.25, 0.99] [0.28, 0.99] [0.24, 0.99]

M3 M4

h = 2 h= 10 h = 20 h = 2 h = 10 h = 20

Post. Mean / / / −0.40 −0.52 −0.52
90% CR / / / [−0.47, −0.31] [−0.67, −0.38] [−0.67, −0.38]
Post. Mean Bounds [−0.99, 1.01] [−3.03, 3.08] [−5.73, 5.93] / / /

90% robust CR [−1.16, 1.16] [−3.69, 3.60] [−6.93, 6.94] / / /

Set of 
IRh|Y {IRh < 0} [0, 1] [0, 1] [0, 1] 1 1 1

Averaging M1, M2 Averaging M1, M3

h= 2 h= 10 h = 20 h= 2 h = 10 h = 20

Post. Mean / / / / / /

90% CR / / / / / /

Post. Mean Bounds [−0.18, −0.04] [−0.76, −0.21] [−1.41, −0.31] [−0.64, 0.52] [−2.05, 1.53] [−3.85, 2.98]
90% robust CR [−0.38, 0.21] [−1.44, 0.76] [−2.63, 1.55] [−1.13, 1.12] [−3.52, 3.48] [−6.60, 6.72]
Set of 
IRh|Y {IRh < 0} [0.59, 0.95] [0.62, 0.99] [0.61, 0.98] [0.38, 0.96] [0.40, 0.98] [0.40, 0.98]

Averaging M3, M4 Averaging M1, M2, M3, M4

h= 2 h = 10 h = 20 h = 2 h= 10 h = 20

Post. Mean / / / / / /

90% CR / / / / / /

Post. Mean Bounds [−0.91, 0.82] [−2.71, 2.60] [−5.05, 5.05] [−0.48, 0.30] [−1.55, 0.94] [−2.89, 1.89]
90% robust CR [−1.14, 1.16] [−3.61, 3.57] [−6.88, 6.80] [−1.09, 1.07] [−3.32, 3.37] [−6.27, 6.51]
Set of 
IRh|Y {IRh < 0} [0.13, 1] [0.13, 1] [0.13, 1] [0.40, 0.96] [0.43, 0.99] [0.42, 0.99]

Similar reverse engineering exercises could usefully shed light on the role of iden-
tifying assumptions in generating so-called price and liquidity puzzles in monetary
SVARs.19

5. Conclusion

We proposed a method to average point-identified models and set-identified models
from the multiple prior (ambiguous belief) viewpoint. The method combines single pri-
ors in point-identified models with multiple priors in set-identified models, and delivers

19The price puzzle occurs when contractionary monetary policy shocks produce a positive response of
the price level (Sims (1992)). The liquidity puzzle refers to positive shocks in monetary aggregates leading
to an initial rising rather than falling of interest rates (Reichenstein (1987)).
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a set of posteriors. The post-averaging set of posteriors can be summarized by the set of
posterior means and robust credible regions, which are easy to compute numerically.
Our averaging method can effectively reduce the amount of ambiguity (the size of the
posterior class) relative to the analysis based on a set-identified model only, and hence
offers a simple and flexible way to introduce additional identifying information into the
set-identified model. In the opposite direction, when the set-identified model nests the
point-identified model, our method offers a simple and flexible way to conduct sensi-
tivity analysis for the point-identified model.
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